

An investigation into System Security

Requirements and Implementation in an

Application Service Provider (ASP) Environment

M.Sc. Thesis

By

Sabrina McNeely, B.Sc.

Department of Mathematics & Computing,

Galway-Mayo Institute of Technology, Galway.

Research Supervisor

John Healy

Submitted to the Higher Education and Training Awards Council,

July 2006

I

Declaration

I hereby declare that the work presented in this thesis is my own and that it has not been

used to obtain a degree in this Institute of Technology or elsewhere.

Sabrina McNeely

II

To my husband Kenneth and my family,

for their continuous encouragement and support.

III

Table of Contents

List of Figures .. VII

Acronyms .. X

Acknowledgements ... XIII

Chapter I : Introduction and Thesis Structure .. 1

1.1 Introduction ... 1

1.2 Thesis Motivation ... 2

1.3 Thesis Objectives .. 3

1.4 Thesis Structure ... 4

Chapter II : Research Framework and Methodologies 7

2.1 Introduction ... 7

2.2 Exploratory Research Methodology ... 7

2.3 Development Methodology ... 8

2.3.1 The Waterfall Model ... 8

2.3.2 The Agile Development Methodology.. 9

2.4 Chapter Summary.. 12

Chapter III : Literature and Technology Review 13

3.1 Introduction ... 13

3.2 Application Service Provision (ASP) ... 14

3.2.1 Comparisons of ASP with Traditional Technology Models 14

3.2.2 Implementation of the ASP Model Past, Present and Future 15

3.3 Application Service Provision (ASP) System Security 15

3.3.1 Physical Security ... 16

3.3.2 Solution Security ... 18

3.3.3 Security and Integrity of Client Data .. 21

3.3.4 ASP Security Policy and Disaster Recovery Plan .. 23

3.3.5 Service Level Agreements (SLAs) and Trust Service Providers 25

3.4 Security Technologies ... 25

3.4.1 Cryptography .. 26

3.4.2 Public Key Infrastructure (PKI) .. 30

IV

3.4.3 Digital Signatures .. 34

3.4.4 Secure Sockets Layer (SSL) and Transport Layer Security (TLS) 37

3.4.5 Digital Identification ... 40

3.4.6 Firewalls .. 41

3.4.7 Internet Protocol Security (IPsec) ... 43

3.4.8 Virtual Private Networks (VPNs) ... 46

3.5 Middleware Security Technologies... 47

3.5.1 Common Object Request Broker Architecture (CORBA) 48

3.5.2 Distributed Component Object Model (DCOM) .. 49

3.5.3 SOAP .. 50

3.5.4 Remote Method Invocation (RMI) ... 51

3.6 Platform Security .. 52

3.6.1 Java Authentication and Authorisation Service (JAAS) 52

3.6.2 Java Cryptography Extension (JCE) ... 53

3.6.3 Java Secure Socket Extension (JSSE) ... 54

3.7 Database Security .. 54

3.7.1 Oracle .. 55

3.8 Security Standards ... 56

3.8.1 OSI Security Model 7498-2 .. 56

3.8.2 ISO 17799 ... 59

3.9 Chapter Summary.. 64

Chapter IV : Case Study ... 65

4.1 Introduction ... 65

4.2 Architecture ... 65

4.2.1 Security Architecture .. 66

4.2.2 Solution Architecture .. 67

4.3 Authentication and Authorisation ... 68

4.3.1 Authentication ... 69

4.3.2 Authorisation ... 80

4.4 Secure Login and navigation ... 85

4.5 Secure Logout ... 90

V

4.5.1 Logout ... 91

4.5.2 Disable Back Button ... 93

4.6 Encryption ... 95

4.7 Strong Passwords .. 98

4.8 Timeout ... 101

4.9 File Upload .. 102

4.10 Logging ... 105

4.11 Prototype ... 107

4.11.1 The Billing4Rent Ltd. Web Application ... 109

4.11.2 The Billing Solution .. 110

4.11.3 The Administration Tool ... 116

4.12 Security Policy .. 121

4.12.1 General Security .. 122

4.12.2 Physical Security ... 122

4.12.3 Host Security ... 123

4.12.4 Network Security .. 124

4.12.5 Data Security ... 124

4.13 Chapter Summary.. 125

Chapter V : Research Evaluation ... 127

5.1 Introduction ... 127

5.2 Security Evaluation Matrix ... 128

5.3 Software Security .. 130

5.3.1 Platform Security .. 130

5.3.2 Application Security.. 133

5.3.3 Middleware Security ... 138

5.3.4 Data Security ... 139

5.3.5 Network Security .. 139

5.4 Hardware Security ... 140

5.4.1 Physical Security ... 140

5.4.2 Network Security .. 141

5.5 Client Data Security .. 144

VI

5.6 Chapter Summary.. 146

Chapter VI : Conclusion ... 147

6.1 Research Outputs .. 147

6.2 Conclusions Drawn ... 148

6.3 Recommendations ... 149

6.4 Future Research Potential ... 150

References .. 152

Appendix I ... II

Appendix II ... XIV

Appendix III ...XXXVIII

VII

List of Figures

Figure 1.1 – Thesis Structure ... 6

Figure 2.1 – Waterfall Model ... 9

Figure 3.1 – Interception of unencrypted data ... 27

Figure 3.2 – Symmetric key encryption ... 28

Figure 3.3 – Public key encryption .. 30

Figure 3.4 – X.509 V3 Certificate .. 32

Figure 3.5 – Digital Signature .. 35

Figure 3.6 – Digital Signature and Encryption .. 36

Figure 3.7 – SSL/TLS Protocol .. 38

Figure 3.8 – Firewall network diagram .. 42

Figure 3.9 – IPsec Document Overview .. 44

Figure 3.10 – IP AH transport mode .. 45

Figure 3.11(a) – ESP Header transport mode .. 45

Figure 3.11(b) – ESP Header tunnel mode .. 45

Figure 3.12 – Leased Line Private Network .. 46

Figure 3.13 – Virtual Private Network ... 47

Figure 3.14 – OSI Security Model 7498-2 ... 56

Figure 3.15 – ISO 17799 .. 60

Figure 4.1 – Biling4Rent network architecture .. 67

Figure 4.2 – Biling4Rent solution architecture .. 68

Figure 4.3 – JAAS high-level architecture ... 70

Figure 4.4 – Authentication Sequence Diagram .. 72

Figure 4.5 – Extract from the B4RClient business object .. 73

Figure 4.6 – Extract from jaas.config... 75

Figure 4.7 – Extract from java.security .. 75

Figure 4.8 – Extract from the RdbmsClientLoginModule class library........................... 76

Figure 4.9 – Extract from the PassiveCallbackHandler class library 78

Figure 4.10 – Extract from the RdbmsClientLoginModule class library......................... 79

Figure 4.11 – Extract from the RdbmsClientLoginModule class library......................... 80

VIII

Figure 4.12 – Extract from catalina.policy... 82

Figure 4.13 – Authorisation Sequence Diagram .. 83

Figure 4.14 – Extract from the ClientCheckPrivilagedAction servlet 84

Figure 4.15 – Extract from the ClientURLAction class library 85

Figure 4.18 – Call Keytool from the command line .. 88

Figure 4.19 – Extract from server.xml ... 89

Figure 4.20 – Connector properties adapted from [104] .. 89

Figure 4.21 – Accept/reject certificate dialog .. 90

Figure 4.22 – Extract from the ClientLogout servlet ... 91

Figure 4.23 – Extract from the RdbmsClientLoginModule class library......................... 92

Figure 4.24 – Extract from Billing4Rent solution servlets .. 93

Figure 4.25 – Page has Expired ... 94

Figure 4.26 – Extract from the RdbmsClientLoginModule class library......................... 95

Figure 4.27 – Extract from the Password class library .. 97

Figure 4.28 – Strong Password regular expression .. 98

Figure 4.29 – Strong Password regular expression construct .. 99

Figure 4.30 – Extract from the Password class library .. 100

Figure 4.31 – Billing4Rent administration tool add new client 101

Figure 4.32 – Extract from Billing4Rent web.xml .. 102

Figure 4.33 – Extract from the ClientFileUpload servlet ... 104

Figure 4.34 – Billing4Rent billing solution upload file ... 104

Figure 4.35 – Billing4Rent billing solution file uploaded ... 105

Figure 4.36 – Extract from the ClientLogin servlet ... 106

Figure 4.37 – Security log .. 107

Figure 4.38 – Model-View-Controller architecture ... 108

Figure 4.39 – Billing4Rent billing solution security alert.. 109

Figure 4.40 – Billing4Rent billing solution ... 110

Figure 4.41 – Client Data menu ... 110

Figure 4.42 – Customers menu .. 111

Figure 4.43 – Products menu ... 112

Figure 4.44 – Invoices menu .. 112

IX

Figure 4.45 – Privacy Statement .. 114

Figure 4.46 – Security Statement ... 115

Figure 4.47 – Billing4Rent Administration tool .. 116

Figure 4.48 – User administration menu .. 117

Figure 4.49 – Client administration menu ... 117

Figure 4.50 – Client administration menu ... 118

Figure 4.51 – B4R Database Properties ... 118

Figure 4.52 – B4R Tablespace Properties .. 118

Figure 4.53 – B4R Table Sizes .. 119

Figure 4.54 – JAMon performance monitor .. 120

Figure 4.55 – JAMon performance monitor .. 121

Figure 4.56 – Solution security overview .. 126

Figure 5.1 – Security Evaluation matrix .. 129

Figure 5.2 – Multi-tier application model adapted from [105] 132

Figure 5.3 – Two-tier DMZ design adapted from [105] .. 143

Figure 5.4 – Three-tier DMZ design adapted from [109] .. 143

Figure 5.5 – Two-tier, proxy-enabled DMZ design adapted from [109] 144

X

Acronyms

3DES Triple Data Encryption Standard

ACL Access Control Lists

AES Advanced Encryption Standard

AH Authentication Header

APIs Application Programming Interfaces

ASCII American Standard Code for Information Interchange

ASP Application Service Provision

ASPs Application Service Providers

CCTV Closed Circuit Television

COM Component Object Model

CORBA Common Object Request Broker Architecture

CORBAsec CORBA Security Service Specification

COTS Commercial Off The Shelf

DCOM Distributed Component Object Model

DES Data Encryption Standard

DMZ Demilitarised Zone

DSA Digital Signature Algorithm

DSS Digital Signature Standard

EFF Electronic Frontier Foundation

EIS Enterprise Information Systems

EIT Enterprise Integration Technologies

EJB Enterprise JavaBeans

ESP Encapsulating Security Payload

EU European Union

FTP File Transfer Protocol

FTPS File Transfer Protocol over Secure Sockets Layer

GUI Graphical User Interface

HTTP Hypertext Transport Protocol

HTTPS Hyper Text Transport Protocol over Secure Sockets Layer

XI

IAB Internet Architecture Board

IDC International Data Corporation

IDL Interface Definition Language

IETF Internet Engineering Task Force

IP Internet Protocol

IPsec Internet Protocol Security

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISO International Standards Organisation

IT Information Technology

ITU International Telecommunications Union

J2EE Java Platform Enterprise Edition

JAAS Java Authentication and Authorisation Service

JCA Java Cryptography Architecture

JCE Java Cryptography Extension

JDBC Java Database Connectivity

JDK Java Development Kit

JRMP Java Remote Method Protocol

JSP JavaServer Pages

JSSE Java Secure Socket Extension

KPIs Key Performance Indicators

LAN Local Area Network

MAC Message Authentication Code

MD5 Message Digest algorithm 5

MIT Massachusetts Institute of Technology

CryptoAPI Crypto Application Programming Interface

MTS Microsoft Transaction Server

MVC Model View Controller

NIST National Institute of Standards and Technology

NTLM NT LAN Manager

ODL Object Definition Language

XII

OMG Object Management Groups

ORB Object Request Broker

OSI Open Standards Interconnect

PINs Personal Identification Numbers

PKI Public Key Infrastructure

RDBMS Relational Database Management System

RMI Remote Method Invocation

RMI/IIOP Java RMI over Internet Inter Orb Protocol

RPC Remote Procedure Call

SaaS Software as a Service

SDLC Software Design Life Cycle

S-HTTP Secure Hypertext Transfer Protocol

SLAs Service Level Agreements

SMTP Simple Mail Transfer Protocol

SSL Secure Sockets Layer

SQL Structured Query Language

TCP Transmission Control Protocol

TLS Transport Layer Security

TSSG Telecommunications Software & Systems Group

UML Unified Modelling Language

URL Uniform Resource Locator

UTF-8 Unicode Transformation Format

VPN Virtual Private Network

VPNs Virtual Private Networks

WAN Wide Area Network

WSS Web Services Security

WS-Security Web Services Security

W3C World Wide Web Consortium

XML Extensible Markup Language

XP eXtreme Programming

XIII

Acknowledgements

I would like to express my appreciation to everyone who encouraged and assisted me

throughout the course of this research project. In particular, I would like to thank Mr

John Healy for his technical and academic support and guidance. Thanks also to Mr

Gabriel Hicks, Head of the Department of Maths and Computing, and Dr John Lohan,

Head of Research, for facilitating this research project. Thanks to the lecturers and the

technicians, in the Department of Maths and Computing, for their constant support and

assistance. Thanks to family and friends for their continuous understanding and

encouragement. A special word of thanks to Patricia Breslin for proofreading this thesis.

Finally, words alone cannot express the thanks I owe to Kenneth, my husband and best

friend, who was beside me every step of the way.

XIV

Abstract

Although the ASP model has been around for over a decade, it has not achieved the

expected high level of market uptake. This research project examines the past and

present state of ASP adoption and identifies security as a primary factor influencing the

uptake of the model. The early chapters of this document examine the ASP model and

ASP security in particular. Specifically, the literature and technology review chapter

analyses ASP literature, security technologies and best practices with respect to system

security in general. Based on this investigation, a prototype to illustrate the range and

types of technologies that encompass a security framework was developed and is

described in detail. The latter chapters of this document evaluate the practical

implementation of system security in an ASP environment. Finally, this document

outlines the research outputs, including the conclusions drawn and recommendations with

respect to system security in an ASP environment. The primary research output is the

recommendation that by following best practices with respect to security, an ASP

application can provide the same level of security one would expect from any other n-tier

client-server application. In addition, a security evaluation matrix, which could be used

to evaluate not only the security of ASP applications but the security of any n-tier

application, was developed by the author. This thesis shows that perceptions with regard

to fears of inadequate security of ASP solutions and solution data are misguided. Finally,

based on the research conducted, the author recommends that ASP solutions should be

developed and deployed on tried, tested and trusted infrastructure. Existing Application

Programming Interfaces (APIs) should be used where possible and security best practices

should be adhered to where feasible.

XV

Published work associated with this Thesis

Sabrina McNeely, Kenneth Kirrane, John Healy and Sean Duignan

Perception: The Real Inhibitor to ASP Adoption?

Information Technology & Telecommunications (IT&T) Conference, National Maritime

College, Cork Institute of Technology, Cork – 2005.

Chapter I Introduction and Thesis Structure

1

Chapter I : Introduction and Thesis Structure

1.1 Introduction

The term Application Service Provision (ASP) is defined as the supply of online software

functionality to multiple clients on a subscription/rental basis, remotely via the Internet or

via a private network [2]. The ASP provider agrees a service level with several

organisations and each client is provided access to the software on a one-to-many basis.

The ASP model dates back to the late 1990’s, although it is still classed by many as a

new and emerging trend. Despite the initial hype, uptake of the ASP model has been

slow to materialise. Several researchers highlight security, availability and scalability as

the primary inhibitors with regard to the realisation of an ASP solution. This thesis

examines system security requirements in an ASP environment and provides an objective

evaluation based on a practical implementation.

In order to gain a thorough understanding of security in an ASP environment, the author

adopted a multilateral view of security. Firstly, the author examined ASP security from a

high level perspective, by dividing security into three distinct considerations: physical

security, solution security and the security/integrity of client data. Secondly, the author

reviewed ASP security from an operational perspective, by evaluating the relevance of

both a security policy and a disaster recovery plan to ASP security. Thirdly, the author

delved beneath the surface of ASP security and investigated security across all tiers of the

service architecture, through the analysis of application, middleware, platform and

database security technologies. Finally, the author gained an understanding of security

best practices, through the exploration of both current technology standards and security

standards such as the Open Standards Interconnect (OSI) security model 7498-2 and the

International Standards Organisation (ISO) 17799 security standard.

The extensive research conducted provided the author with the knowledge required for

the practical implementation of a security framework for an ASP billing solution known

Chapter I Introduction and Thesis Structure

2

formally as Billing4Rent. The Billing4Rent project was realised using the industry

proven Java Platform Enterprise Edition (J2EE) development environment, interacting

with an Oracle 9i database, deployed on an Apache Tomcat webserver. The practical

implementation was supplemented through the documentation of best practices with

regard to the development of both a security policy and a disaster recovery plan. The

entire Billing4Rent security framework enabled the author to perform an objective

evaluation of the practical implementation of system security in an ASP environment

using the knowledge gained from a comprehensive system security literature and

technology review.

1.2 Thesis Motivation

Enterprise Ireland, along with Industry partners Intec and an interested 3rd Party,

provided the finance for the implementation of an ASP billing solution formally known

as Billing4Rent. It is envisaged that the aforementioned project will lead to the formation

of Billing4Rent Ltd. which will be tasked with bringing an ASP-based billing solution to

market.

The Billing4Rent solution enables tier 3 and 4 network operators, content providers,

service aggregators and other genres of service providers to access state-of the-art billing

functionality on a subscription or a rental basis. Despite clear market demand from small

and entrant providers, there is no similar service currently operational. This can be

attributed to the fact that there are significant barriers inhibiting the realisation of such a

solution. These include the huge amount of intellectual property embedded in incumbent

billing vendor’s commercial-off-the-shelf (COTS) products and the major technical

challenges that need to be addressed to support a scalable, secure and robust ASP-based

solution that can be effectively used by personnel with limited technical expertise.

The Billing4Rent solution was implemented as part of a joint venture between The

Telecommunications Software & Systems Group (TSSG) at the Waterford Institute of

Chapter I Introduction and Thesis Structure

3

Technology and the Informatics Research Group at the Galway-Mayo Institute of

Technology.

1.3 Thesis Objectives

The Informatics Research Group at the Galway-Mayo Institute of Technology had overall

responsibility for two distinct areas of research -:

 An Investigation into system security requirements and Implementation in an

Application Service Provision (ASP) environment.

 A Framework for high availability and optimum system performance in an

Application Service Provision (ASP) environment.

This thesis is concerned solely with the former, ‘An Investigation into system security

requirements and Implementation in an Application Service Provision (ASP)

environment’. It is expected that this investigation will yield a comprehensive framework

of best practice with respect to system security within the ASP domain.

The primary objective of the programme of research can be broken down into five

distinct goals -:

 Perform a comprehensive literature review of ASP material and system security

requirements in particular.

 Review of technical material with regard to the implementation of system

security in general and in a J2EE application server environment, the

development platform chosen for the realisation of the ASP solution, in

particular.

Chapter I Introduction and Thesis Structure

4

 Examination of security best practices, through the exploration of both current

technology standards and security standards such as the Open Standards

Interconnect (OSI) security model 7498-2 and the International Standards

Organisation (ISO) 17799 security standard.

 Implementation of system security in the Billing4Rent ASP project based on

the project goals and the aforementioned research.

 An objective comparison of the practical implementation of system security in

the Billing4Rent ASP environment with both the comprehensive ASP system

security literature and technology review and established best practices in

middleware security.

1.4 Thesis Structure

The remaining chapters of the thesis are structured as follows:

Chapter II describes the research framework used. This includes an overview of both

exploratory research and agile development methodologies, and their applicability to the

programme of research.

Chapter III details the results of a comprehensive literature and technology review of

ASP and system security material, focusing primarily on security requirements in an ASP

environment. It examines security technologies across all tiers of the service architecture

and outlines the role of security policies, disaster recovery plans, service-level

agreements and security standards in an ASP environment.

Chapter IV introduces the Billing4Rent solution prototype developed to enable tier 3

and 4 operators and communications providers take advantage of a low cost billing

service. It details the implementation of system security in the Billing4Rent project and

Chapter I Introduction and Thesis Structure

5

illustrates the range and types of technologies that are encompassed by the security

framework.

Chapter V provides an objective comparison and analysis of the practical

implementation of system security in the Billing4Rent environment using the best

practices and frameworks described in the system security literature and security

technical material review.

Chapter VI concludes the thesis with a summary of the work completed, the conclusions

drawn and provides a list of recommendations for future work.

Chapter I Introduction and Thesis Structure

6

Figure 1.1 – Thesis Structure

Chapter II Research Framework and Methodologies

7

Chapter II : Research Framework and Methodologies

2.1 Introduction

This chapter outlines the author’s approach to the work and the methodologies applied

throughout the course of the research. In order to gain an in-depth understanding of

Application Service Provision (ASP) and ASP security in particular, the author adopted

an exploratory research methodology. The knowledge gained from the exploratory

research laid the groundwork for the implementation of a secure Billing4Rent ASP

solution using an agile development methodology.

2.2 Exploratory Research Methodology

Exploratory research is defined by Crawford as a means of providing a better

understanding of the research problem [2]. “Exploratory research often relies on

secondary research such as reviewing available literature and/or data, or qualitative

approaches such as informal discussions with consumers, employees, management or

competitors, and more formal approaches through in-depth interviews, focus groups,

projective methods, case studies or pilot studies [1].”

In order to fully understand the nature of ASP and, in particular, system security

requirements in an ASP environment, the author conducted an extensive literature review.

The literature review was further supplemented by a comprehensive technology review to

evaluate the practical implementation of system security in a J2EE application server

environment. In addition, the author examined security best practices, through the

exploration of both current technology standards and security standards such as the Open

Standards Interconnect (OSI) security model 7498-2 and the International Standards

Organisation (ISO) 17799 security standard. Finally, the Billing4Rent case study enabled

Chapter II Research Framework and Methodologies

8

the author to perform an objective evaluation of the practical implementation of system

security in an ASP environment using the knowledge gained from a comprehensive

system security literature and technology review.

2.3 Development Methodology

The waterfall model is the classic software lifecycle model. The model describes a

development methodology that is both linear and sequential. The agile development

methodology provides an alternative development methodology to the popular waterfall

model. However, agile development can actually incorporate the waterfall model on a

small scale, by splitting the project into several iterations and repeating the entire

waterfall cycle for each iteration. Alternatively, development can be carried out

simultaneously so that there are no distinguishable phases e.g. eXtreme Programming

(XP) [3], [4].

2.3.1 The Waterfall Model

The waterfall model is a sequential software engineering process where development is

seen as flowing steadily downwards, like a waterfall, through the phases of development

life cycle. The waterfall model, documented in 1970 by W. W. Royce, was the first

publicly documented life cycle model [5]. Ironically, Royce himself advocated an

iterative approach to software development.

Overview of waterfall model development phases (Figure 2.1):

 Analysis of the problem and documentation of requirements.

 Documentation to describe in detail how the system should be built.

 Development of the system based on the design documentation.

 Unit and system testing of the system.

Chapter II Research Framework and Methodologies

9

 System integration and end-user testing.

 Software is updated to correct errors previously undetected in the testing phases

and to meet the changing customer needs.

Requirements

Design

Implementation

Testing

Integration

Maintenance

Figure 2.1 – Waterfall Model

The primary advantages of the waterfall model are the clearly defined milestones and

deliverables and the model’s emphasis on documentation throughout the entire lifecycle.

A major drawback of the model is the difficulty of accommodating change throughout the

course of the project. Figure 2.1 depicts the waterfall model.

2.3.2 The Agile Development Methodology

In 2001, a group of seventeen software methodologists met in Utah to bring together the

various development methodologies that had been developed over the previous decade or

Chapter II Research Framework and Methodologies

10

so. They amalgamated the principles of those methodologies into a simple statement,

now known as the Agile Manifesto [4], [6]:

“We are uncovering better ways of developing software by doing it and helping others do

it. Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more

[6].”

Although there are a number of agile software development methods, this section

concentrates solely on the XP and the iterative waterfall development methodologies.

2.3.2.1 eXtreme Programming (XP)

XP is a set of values, principles and practices that facilitate the rapid development of

software that provides the highest value for the customer in the fastest way possible.

Kent Beck, Ward Cunningham and Ron Jeffries devised XP during their work on the

Chrysler Comprehensive Compensation System (C3) project [1]. XP takes twelve

software development best practices and applies them to the extreme.

Overview of XP core practices:

 Planning: Customers define and prioritise the system features with user stories.

 Small Releases: Functionality is released into production early and often,

adding additional features with each release.

 System Metaphor: XP teams use a common system of names and descriptions.

Chapter II Research Framework and Methodologies

11

 Simple Design: XP teams emphasise simply written, object-oriented code that

meets requirements.

 Continuous Testing: Designers write automated unit tests prior to

development and run them throughout the project.

 Refactoring: XP teams frequently revise and edit the overall code design.

 Pair Programming: Programmers work side by side in pairs, continually

seeing and discussing one another’s code.

 Collective Code Ownership: All programmers have collective ownership of

the code and the ability to change it.

 Continuous Integration: XP teams integrate code and release it to a repository

every few hours and under no circumstance hold on to it longer than a day.

 40 Hour Work Week: Programmers work only 40 hours per week.

 On-site Customer: Development teams have continuous access to a customer

representative throughout the development project.

 Coding Standards: Programmers must follow a common coding standard so

all the code in the system looks as if a single individual wrote it.

The primary advantages of the XP methodology are customer involvement throughout the

project, the emphasis on teamwork and communication and the flexibility to deal with

changing requirements. However XP is not without its flaws. The main disadvantages of

the XP methodology is that it is code-centered instead of design-centered and the lack of

emphasis on project documentation.

2.3.2.2 Iterative Waterfall Development Model

The iterative waterfall agile development methodology subdivides the development

lifecycle into several iterations. Each iteration is in itself a self-contained subproject

composed of activities such as requirements analysis, design, implementation, testing,

integration, and maintenance [4]. The iterative waterfall agile development methodology

benefits from the advantages of the pure waterfall model such as clearly defined

Chapter II Research Framework and Methodologies

12

milestones/deliverables and its emphasis on documentation throughout the entire life

cycle. However, this model supplements the pure waterfall model through incremental

development and by facilitating changing requirements throughout the course of the

project.

2.4 Chapter Summary

Due to the unpredictable nature of the Billing4Rent project the author elected to adopt an

agile development methodology. The iterative waterfall agile development methodology

was chosen over the XP agile development methodology as the development team did not

have continuous access to a customer representative and the team was separated

geographically. The Billing4Rent project was subdivided into a number of distinct

iterations. Each iteration was in turn subdivided into the six waterfall phases i.e.

requirements analysis, design, implementation, testing, integration, and maintenance.

The industry standard Unified Modelling Language (UML) was used by the author to

design the Billing4Rent security framework. As the development platform was subject to

change, the author adopted an iterative approach to the development of a loosely-coupled

architecture.

Chapter III Literature and Technology Review

13

Chapter III : Literature and Technology Review

3.1 Introduction

This chapter details the results of a comprehensive literature and technology review of

Application Service Provision (ASP) and associated system security material, focusing

primarly on security requirements in an ASP environment. The chapter is further broken

down into a number of distinct sections that:

 Provide an overview of the ASP model by drawing comparisons with

traditional technology models, such as time-sharing and outsourcing. ASP

solution implementations past, present and future, in the technology sector are

examined, in order ascertain the risks and benefits of the ASP model.

 Examine ASP system security, paying particular attention to physical security,

solution security and the security and integrity of customer data. The roles

played by Service Level Agreements (SLAs) and independent trust service

providers are reviewed from an ASP environment perspective.

 Explore existing security technologies and how they ensure the privacy,

security and integrity of data stored locally and transferred over the Internet. In

particular, the security provided by both the Java platform and Oracle’s 9i

database offering are investigated in order to ascertain best practice with regard

to security.

 Detail existing network and information security standards such as the Open

Standards Interconnect (OSI) security model 7498-2 and International

Standards Organisation (ISO) 17799.

Chapter III Literature and Technology Review

14

3.2 Application Service Provision (ASP)

ASP refers to the supply of online software functionality to multiple clients on a

subscription or rental basis, remotely via the Internet or a private network. Application

Service Providers (ASPs) agree service levels with several organisations and each client

is provided with access to the software on a one-to-many basis. On-demand and utility

computing are alternative terms for ASP. However, these models often incorporate

concepts such as server or storage leasing. The ASP model dates back to the late 1990’s,

although it is still classed by many as a new and emerging trend [7], [8], [9].

3.2.1 Comparisons of ASP with Traditional Technology Models

Although ASP is still a nascent technology, the concept stems from both traditional

technology models of time-sharing and outsourcing. Traditional mainframe systems are a

prime example of time-sharing, given that multiple users share the mainframe resources.

Technology may have changed dramatically over the past 40 years, but its application

appears to have come full circle. Substitute ‘application service provider’ for ‘time-

sharing’ and this 1967 definition still works well: “time-sharing is a communication-

oriented method of using computers” [10]. Braunstein [11] also makes a comparison

between the ASP model and time-sharing, by specifying that although the term ASP is

relatively new, the concept of application hosting dates back to the 1960s. Known then

as time-sharing, corporations and educational institutions would take turns renting

mainframe-processing capabilities, as no single organisation could afford the total cost of

computing [11].

Traditionally many businesses found it cost effective to outsource certain business

functions. Outsourcing typically involves employing a 3rd party to provide services on

behalf of an organisation. Most outsourcing initiatives are driven by both economic and

strategic motives [12]. ASP gives a new dimension to outsourcing and is thus perceived

Chapter III Literature and Technology Review

15

by many, as the third wave of outsourcing (B. Desai et al 2003, refers to Currie and

Seltsikas 2001) [7].

3.2.2 Implementation of the ASP Model Past, Present and Future

In spite of the promise and potential of improving the way organisations develop, operate

and maintain Information Technology (IT) applications, ASPs have fared poorly in terms

of attracting a large client base [13]. High growth level predictions, by leading

consulting firms such as Dataquest, Tankee Group, Forrester Research and International

Data Corporation (IDC) group varied considerably to anywhere between $7 billion and

$23 billion by 2003 [14], [12], [8], [15]. Although ASPs have not achieved the rapid

market acceptance foreseen by many researchers, some proponents argue that the

attractiveness of the ASP model is currently on the increase [16], [17]. Seltsikas and

Currie believe the future is still bright for ASPs, stating that the ASP industry remains

immature and will likely evolve into a more consolidated market, where the term ASP is

likely to be superseded by software-as-a-service (SaaS) [17]. Current estimates indicate

that worldwide spending on SaaS and associated software license revenue will reach

$13.4 billion by 2007 [8], [18].

3.3 Application Service Provision (ASP) System Security

Several researchers refer to security as one of the key factors influencing the uptake of

the ASP model [10], [7], [19]. Fears of inadequate security and privacy have prevented

many firms from fully investigating and integrating the ASP business model [7]. Winch

[19] outlines data security and integrity, along with disaster recovery and backup, as the

two most important Key Performance Indicators (KPIs) for potential and existing ASP

customers. A survey conducted by B. Desai and W. Currie [20], designed to capture the

KPIs used to evaluate the benefits and risks relating to the ASP model, further

strengthens the notion that data security and integrity, along with disaster recovery,

Chapter III Literature and Technology Review

16

backup and restoration as key reasons why customers are reluctant to adopt the ASP

model [20]. Although many researchers touch on the area of security on examination of

the ASP model, surprisingly there is a distinct lack of in-depth research into the key

factors influencing the adoption of the ASP model and ASP security in particular.

Tao [14] specifies that ASP security can be divided into both client data and server

availability. However, Linthicum [21] and Anderson [22] take the concept of ASP

security one step further, breaking down server availability into hardware and software

security breaches. Anderson [22] examines security problems through its classification

into three areas: hardware, software and data. Linthicum [21] adds weight to the above,

citing examples of each type of security breach. Firstly, inadequate solution security may

result in unauthorised network access. Secondly, inadequate physical security may result

in internal security breaches. Finally, he poses a question as to protection of sensitive data

from competitors using the same ASP solution [21].

Anderson [22] and Linthicum [21] subdivide ASP security into three distinct

considerations: physical security, solution security and the security and integrity of client

data. However, no overview of system security would be complete without an

examination of a security policy and a disaster recovery plan, and their direct correlation

with each of the above considerations. Based on the results of the aforementioned survey

conducted by B. Desai and W. Currie [20]; disaster recovery, backup and restoring

procedures were equally relevant as data security and integrity with regard to the uptake

of the ASP model.

3.3.1 Physical Security

Physical security is concerned with securing the ASP solution hardware and its location

against theft, tampering and damage, either intentional or unintentional [23], [24].

Bhagyavati and Hicks [25] add weight to this definition, stating that physical security

involves the locking up of assets such as networking infrastructure, computing systems

Chapter III Literature and Technology Review

17

and data storage, in order to provide protection from unauthorised monitoring, theft,

corruption, and natural disasters. An organisation wishing to protect valuable data in a

computing system should devise a physical security policy, which offers deterrence to an

attacker and controls access to the system. [23]. Wang [26] defines hardware security as

the physical protection of devices through the provision of a secure environment. In

general, data centers are used to house electronic equipment, such as computer systems

and communications equipment. ASPs may choose to maintain their own data centers, or

alternatively they may opt to outsource data center services to a third party. The major

benefit of adopting an outsourcing strategy is that organisations are free to concentrate on

core business [27], [28]. In either case it is a primary responsibility of the ASP hosting

company to safeguard electronic and telecommunications equipment against

environmental damage, in addition to physical damage or theft by both employees and

individuals external to the organisation. Baldwin, Shiu and Mont [29] highlight the fact

that contrary to popular belief, the majority of security problems are, of course, not

results of external intruders but are the result of internal attacks. Anderson [22] furthers

this hypothesis stating that employee actions, both intentional and unintentional can be

extremely damaging to the organisation.

Examples of physical security breaches:

 ASP solution hardware and communications equipment may be damaged or

destroyed by natural disasters, electrical surges, fire or water.

 Access to the data center may be compromised and ASP solution hardware may

be damaged, tampered with or stolen by unauthorised personnel.

 ASP solution hardware may be damaged, tampered with or stolen by

disgruntled or former employees.

 Authorised personnel may inadvertently damage ASP solution hardware.

Decisions made with regard to the location, construction and layout of the data center, are

often based on efficient workflow, with security being a secondary consideration [30].

The location and layout of the data center is relevant to physical security from

environmental, internal and external security perspectives. In areas prone to natural

Chapter III Literature and Technology Review

18

disasters such as floods, earthquakes and tornados, special care needs to be given to the

construction and the layout of the data center. Data centers meet the security needs of

ASPs as they invest heavily in security systems including sophisticated personal controls.

Personal controls include fingerprint or IRIS identification, along with passwords and

armed guard protection of facilities [10]. It is often the creation of a secure and

survivable operational environment that proves to be a challenge, rather than the creation

or integration of the software system [29].

Recommendations for ensuring physical security of ASP solution hardware:

 ASP solution hardware should be placed in a secure data center.

 ASP solution hardware should be further secured physically, through the use of

security cables, padlocks and other such devices.

 Access to the data center should be restricted to authorised personnel, through

the use of biometric scanners plus user pins or passwords.

 Access control policies and procedures should be implemented and adhered to

by all personnel e.g. a policy of two-in-two-out should be implemented in order

to gain access to the data center.

 Closed circuit television should be installed in order to monitor activities

throughout the data center.

3.3.2 Solution Security

Solution security is concerned with restricting access to the ASP solution to authorised

personal and securing both the exchange and the storage of customer data within the ASP

environment. As ASPs supply online software functionality on a subscription/rental

basis, they are particularly vulnerable to penetration by outsiders. ASP solutions are

susceptible to threats at the remote terminal and along the communications link, in

addition to threats at the physical machine [31]. Particular attention should be paid to the

security risk associated with badly written software and poorly configured solutions, as

many of the well-publicised computer security and virus problems relate to bugs in

Chapter III Literature and Technology Review

19

software, errors in code or application logic [32], [33], [34] and poorly configured

solutions. As such it is not surprising that best practices recommend considering security

early in the Software Design Life Cycle (SDLC), knowing and understanding common

threats, designing for security, and subjecting solutions to thorough objective risk

analyses and testing [35].

Examples of solution security breaches:

 Software bugs (errors in code or application logic) and poorly configured

systems leave the computer systems open to external attacks.

 Computer systems may become infected by viruses (malicious applications

loaded onto a computer system without ones knowledge) and worms (malicious

applications that can replicate themselves across a network). Both viruses and

worms could compromise ASP solution usability or availability.

 Computer systems may become infected by spyware (software that gathers

information from a computer system without ones knowledge and relays that

information via the internet to the creator) and adware (software that gathers

information from a computer system without ones knowledge and uses that

information to display relevant advertisements). Both spyware and adware

could compromise sensitive data stored on machines in an ASP environment in

addition to solution usability or availability.

 Hackers or crackers (individuals who attempt to gain unauthorised access to

computer systems with the sole purpose of causing damage or stealing

information) may gain unauthorised access to sensitive data stored in the ASP

environment.

 The security and integrity of sensitive data exchanged over communication

links may be compromised if unencrypted data is intercepted by external

entities.

 Denial-of-service attacks such as the:

o Consumption of scarce, limited, or non-renewable resources.

o Destruction or alteration of configuration information.

o Physical destruction or alteration of network components.

Chapter III Literature and Technology Review

20

 Other attacks such as ‘ping of death’ and ‘teardrop’ may compromise ASP

environment usability or availability, by overloading or crashing the computer

system.

It is a primary responsibility of ASPs to guard against malicious attacks that monopolise

communications and server resources [14] and compromise system usability or

availability. On a technical level, the solution needs to take care of identity management,

authentication, authorisation, audit, assurance of communication, information retention

and disaster recovery [29]. Identity management, authentication, authorisation and

assurance of communication are all relevant to our exploration of solution security.

Access to computer systems and authorisation for use of computer systems services and

software components in an ASP environment should be kept to an absolute minimum.

Both auditing or logging and disaster recovery will be dealt with in the discussion with

regard to the documentation and implementation of an ASP security policy and disaster

recovery plan.

Recommendations for ensuring the physical security of an ASP solution:

 The ASP solution should be tested rigorously to ensure that neither the software

nor the configuration of the ASP environment pose a security risk.

 Appropriate service packs and patches should be applied to both the operating

system and applications as soon as they are made available.

 Anti-virus and anti-spyware software should be installed on all machines and

updated periodically.

 Firewalls should be configured to filter undesired traffic between the Internet

and the ASP solution.

 Ensure there are no unnecessary services running on the ASP solution hardware

by shutting down unused ports and daemons.

 Access to ASP computer systems should be restricted to authorised personnel

by enforcing strong passwords.

 Remote access to ASP solution hardware should be limited to an absolute

minimum.

Chapter III Literature and Technology Review

21

 Data sent over the Internet should be encrypted to ensure the security and

integrity of the data being transmitted.

3.3.3 Security and Integrity of Client Data

Data security is also concerned with ensuring the privacy and integrity of client data in an

ASP environment. Data security is intrinsically twofold: it includes the privacy

protection and the soundness of the stored information [36]. ASP clients ascribe a

significant amount of risk to trusting an external organisation with vital data and critical

applications [10]. As each client is provided access to the ASP solution software on a

one-to-many basis, it is critical that the ASPs reassure clients that their data is protected

from their competitors.

Examples of data security and integrity breaches:

 Sensitive customer data may be compromised if data stored on ASP solution

hardware is not permanently erased prior to disposal.

 Software bugs and poorly configured systems may result in sensitive data

falling into the wrong hands.

 Poor solution security may result in sensitive data falling into the wrong hands.

There is a distinct overlap between both ASP physical and solution security, and the

security and integrity of customer data, as unauthorised access to the ASP hardware

and/or solution may result in the security and integrity of client data being compromised.

ASPs must establish stringent procedures to avoid compromising the integrity of

customer data while it is under their care [14]. ASPs need to be aware of their legal

obligations with regard to the protection of client data. In Europe this legislation comes

in the form of the ‘Privacy and Electronic Communications Directive’ and the ‘Data

Protection Directive’:

Chapter III Literature and Technology Review

22

Privacy and Electronic Communications Directive (Directive 2002/58/EC):

Directive 2002/58/EC is composed of a set of European Union (EU) rules to

ensure the protection of privacy and personal data in electronic communications.

The directive includes provisions on security of networks and services,

confidentiality of communications, access to information stored on terminal

equipment, processing of traffic and location data, calling line identification,

public subscriber directories and unsolicited commercial communications [37].

The Data Protection Directive (Directive 95/46/EC):

Directive 95/46/EC is composed of a set of EU rules to safeguard personal data by

providing technology-neutral legislation that is applicable to all types of current

electronic communications. Under this directive, EU member states are

responsible for the protection of a persons fundamental rights and freedoms, and

in particular their right to privacy with respect to the processing of personal data.

However, in doing so they must ensure that they do not restrict or prohibit the free

flow of personal data between member states [38].

Recommendations for ensuring data security in an ASP environment:

 Ensure redundant hardware is disposed of in an appropriate manner. Software

and data should be uninstalled and erased to guarantee that sensitive data is not

accessible to unauthorised individuals.

 The ASP solution software and the configuration of the ASP environment

should be tested rigorously to ensure the security and the integrity of client

data.

 Solution security threats should be identified and the appropriate action should

be taken to combat unauthorised access to sensitive data.

Chapter III Literature and Technology Review

23

3.3.4 ASP Security Policy and Disaster Recovery Plan

“The only system which is truly secure is one which is switched off and unplugged,

locked in a titanium lined safe, buried in a concrete bunker, and is surrounded by nerve

gas and very highly paid armed guards. Even then, I wouldn't stake my life on it” (G.

Spafford). Although Spafford’s [39] statement may seem very far-fetched, the underlying

meaning is well grounded in reality. Unfortunately, no system will ever be 100% secure

and thus it is crucial that ASP hosting companies identify potential security issues and

follow up by documenting and implementing an effective security policy and an efficient

disaster recover plan. Avolio [40] strengthens the above hypothesis stating that there is

no such thing as complete security in a usable system and consequently, it is important to

concentrate on reducing risk as opposed to wasting resources trying to eliminate risk

completely.

3.3.4.1 Security Policy

ASPs and, where appropriate, data centers are advised to devise a security policy, which

meets the needs of the ASP and their clients. The function of a security policy is to

outline guidelines for ensuring optimal security of the ASP solution. The Internet

Engineering Task Force (IETF) [41] defines a security policy in the form of a formal

statement of the rules by which people who are given access to an organisation’s

technology and information assets must abide. A security policy is an ever-changing

document, constantly amended to cater for updates to an organisation’s systems and

procedures. The security policy should be composed of a combination of guidelines with

regard to physical security, solution security and the security and integrity of information.

Both risk analysis and system monitoring are essential to the creation of an effective

security policy. Risk analysis is defined as the identification of the most probable threats

to an organisation and the analysis of the related vulnerabilities of the organisation to

these threats [42]. The objective of risk analysis is to identify business processes and

Chapter III Literature and Technology Review

24

supporting technologies, examine the possible threats to both with a view to at best

eliminating the threat, or at worst minimising the potential impact of the threat. Although

risk analysis is an efficient means of protection from known threats, it is generally

ineffective against unperceived threats. System monitoring, both passive and active,

provides a successful means of highlighting unforeseen threats in a timely manner and

thus limits their impact [41], [43]. In both cases, system and network activity is

continuously logged. However, active monitoring provides the added benefit of

triggering an event when a pre-specified condition is met.

3.3.4.2 Disaster Recover Plan

A disaster recovery plan is defined by Toigo [44] as a set of activities intended to prevent

avoidable instances of unplanned interruption, regardless of cause, and to minimise the

impact of interruption due to unavoidable events. A disaster recovery plan should be

implemented, to ensure ease of recovery in the event of a natural disaster, a man-made

disaster or any event, which causes interruption to normal business processes.

Earthquakes, hurricanes and tornadoes are examples of natural disasters; terrorism, theft

and arson are examples of man-made disasters; viruses, security breaches and denial-of-

service attacks are examples of interruption to normal business processes. A disaster

recovery plan should incorporate ASP business processes in addition to systems,

networks and information, given their importance to the success of the ASP solution.

Recommendations for creating an optimal disaster recovery plan:

 Prioritise ASP business processes according to their criticality to the

organisation.

 Design a complete network diagram that includes details of system redundancy

and failover procedures.

 Provide in-depth detail of backup procedures for ASP solution hardware,

software and business processes. This detail should include the method and

frequency of backups and the location of remote backup facilities.

Chapter III Literature and Technology Review

25

 Detail recovery procedures for ASP solution hardware, software and business

processes to ensure a timely recovery in the event of a disaster.

It is essential that down-time in an ASP environment be kept to an absolute minimum. In

order to meet this requirement, it is imperative that the disaster recovery plan is updated

regularly to reflect changes to ASP systems and business processes, and tested regularly

to ensure both validity and ease of recovery in the event of a disaster.

3.3.5 Service Level Agreements (SLAs) and Trust Service Providers

The success of the ASP model depends on the establishment of trust between the parties

involved. SLAs are essential to the success of the ASP model and are fundamental to

meeting or exceeding client expectations and developing a high degree of trust between

both parties. SLAs outline the relationship between the service provider and the client.

They detail the agreed ASP solution and outline expectations with regard to availability,

performance and security [45].

Independent Trust Service Providers also play a significant role in establishing trust, by

alleviating client concerns with regard to security and privacy. ASPs who display a trust

seal obtained from an Independent Trust Service Provider, demonstrate that they have

undertaken an independent auditing process to verify their solution meets International

Trust Services Standards. Both SLAs and trust seals assist in the elimination of fears of

inadequate security and privacy.

3.4 Security Technologies

The increasing growth in the number of computer networks, the use of the Internet and

the use of distributed computing applications, has increased concerns with regard to

privacy, security and integrity of information exchange, and further increased interest in

Chapter III Literature and Technology Review

26

the use of technologies to protect information transferred over these networks [46]. This

section examines the various system, network and information security technologies in

use today.

3.4.1 Cryptography

Cryptography is the practice and the study of encryption and decryption and comes from

the Greek word ‘kryptos’ meaning hidden and ‘graphia’ meaning writing [47].

Encryption is the translation of data into an unintelligible form through the use of a secret

code, in order to ensure confidentiality. Encrypted data is referred to as ‘cipher’ or

‘cipher text’, whereas unencrypted data is commonly known as ‘plain text’. Decryption

is the process of restoring data to its original form through the use of a secret code.

Encryption is an effective means of ensuring the privacy and integrity of information

stored locally or transferred over a network.

Data stored locally:

Sensitive data stored locally should be encrypted to ensure that data cannot be interpreted

by individuals gaining unauthorised access to the computer system. Encryption thus

provides additional protection in the event local or remote computer system security

breaches.

Data transmitted over a network:

Sensitive data transmitted over a network should be encrypted to ensure that data cannot

be interpreted should a third party intercept it. Figure 3.1, adapted from [48], provides an

example of how the privacy and integrity of data transferred over the Internet may be

compromised. Joe could intercept unencrypted data transferred over the Internet from

Mary to John. Both John and Mary would be unaware that Joe has read or updated

Mary’s personal message.

Chapter III Literature and Technology Review

27

Figure 3.1 – Interception of unencrypted data

The interception of unencrypted sensitive data (i.e. credit card details, bank details,

sensitive company data etc.) transferred over the Internet, could have disastrous

consequences. The solution is for both parties to agree on a method of encryption, which

can be used to encode the data prior to it being sent over the Internet.

This section examines two alternative strategies for data encryption: conventional

encryption otherwise known as symmetric encryption and public key encryption

otherwise known as asymmetric encryption.

3.4.1.1 Symmetric key encryption

Computers wishing to communicate securely, agree on a secret key, which will be used to

both encrypt and decrypt data in the form of packets sent over a network [49], [50], [51],

Chapter III Literature and Technology Review

28

[48], [52]. Figure 3.2 highlights the use of symmetric key encryption in network

communication.

Figure 3.2 – Symmetric key encryption

The Data Encryption Standard (DES), Triple Data Encryption Standard (3DES) and

Advanced Encryption Standard (AES) are the three most prominent symmetric key

encryption algorithms. DES was developed by IBM and was adopted by the National

Institute of Standards and Technology (NIST) as a standard in 1977 [49], [50], [51], [48].

DES divides plaintext into 64 bit blocks and uses a cipher key consisting of 64 binary

digits, 56 of which are randomly generated, the remaining 8 bits are used for error

detection. The 56-bit key is used as a parameter for the encryption/decryption algorithm

and is composed of sixteen iterations of substitutions and transpositions. Since its

adoption as a standard, there have been concerns with regard to the level of security

provided by DES. These concerns proved to be well justified. Due to advances in

computing power, the Electronic Frontier Foundation (EFF) succeeded in breaking DES

in 1998, using a special purpose DES cracking machine costing less than $250,000 [49],

[50], [51], [48]. DES was eventually superseded by 3DES, which was incorporated as

part of the Data Encryption Standard in 1999 [49]. 3DES uses three separate 56-bit

cipher keys and three executions of the DES algorithm instead of one, thus giving an

overall key length of 168 bits. 3DES was popular due to its enhanced security and reuse

Chapter III Literature and Technology Review

29

of the DES algorithm; however due to its limited block size and inefficient

implementation it in-turn was superseded by AES. In 2001 NIST published the AES

standard based on the Rijndael algorithm submitted by Belgian cryptographers Joan

Daemen and Vincent Rijmen [50], [48]. AES consists of 128-bit blocks with a 128-bit,

192-bit or alternatively a 256-bit cipher key length. The number of rounds/iterations of

the encryption/decryption algorithm is dependent on the cipher key length. A major

drawback of symmetric key encryption is the security risk associated with the distribution

of the encryption/decryption key to all system users.

3.4.1.2 Public key encryption

In 1976, Whitfield Diffie and Martin Hellman, researchers at Stanford University,

proposed a radically new kind of cryptosystem, one in which the encryption and

decryption keys were different [49]. Known as public key encryption or asymmetric

encryption, it provides a solution to the above key distribution problem through the use of

a public key, which can be widely distributed and a private/secret key known exclusively

by the recipient. Data encrypted using an encryption/decryption algorithm and public

key, can only be decrypted using the encryption/decryption algorithm and the

corresponding private key [49], [50], [51], [48], [52]. Figure 3.3 highlights the use of

public key encryption in network communication.

Chapter III Literature and Technology Review

30

Figure 3.3 – Public key encryption

RSA encryption is an example of public key encryption and was developed in 1977 at the

Massachusetts Institute of Technology (MIT), by professors Ron Rivest, Adi Shamir and

Len Adleman [49]. The acronym RSA is constructed from the first initial of each of the

researchers surnames. RSA encryption security is based on the difficulty in factoring

large numbers, with a key that varies depending on the implementation used. RSA can

also be used as a digital signature to authenticate the originator and ensure the integrity of

the data. This thesis further examines digital signatures with regard to authentication in

section 3.4.3.

3.4.2 Public Key Infrastructure (PKI)

A Public Key Infrastructure (PKI) comprises a system of certificates, certificate

authorities, subjects, relying partners, registration authorities, and key repositories that

provide for safe and reliable communications [53]. Certificate authorities and digital

certificates play a major role in the distribution of public keys used for public key

encryption. A certificate is a digitally signed binding between a public key and one or

more attributes of its owner, such as name, e-mail address Uniform Resource Locator

(URL) or properties that can be used to grant permissions or capabilities [54]. A

Chapter III Literature and Technology Review

31

certificate authority is any organisation or individual that issues digital certificates i.e.

signed certificates with a public key [50]. If party A and party B wish to communicate

securely using public key encryption, how does party B know that the public key belongs

to party A and not party C masquerading as party A? The solution to this problem is to

obtain a digital certificate, which verifies details of the individual, organisation or server

that owns the corresponding public key. A certificate authority is responsible for the

issue of digital certificates and must confirm the identity of the certificate applicant. As

the certificate authority is a trusted third party, anyone wishing to communicate securely

with the owner of public key can confirm his or her identity through the digital

certificate. The digital certificate also contains the digital signature of the issuing

certificate authority, so that a recipient can verify that the certificate itself is valid. On

receipt of the certificate, the recipient uses the certificate authority’s public key to decode

the certificate and retrieve the owner’s identity information and public key. The public

key is in turn used to send a secure message to the certificate owner. X.509 is the most

widely used standard for digital certificates.

3.4.2.1 X.509 Standard

The International Telecommunications Union (ITU) developed X.509, the most widely

used standard for digital certificates, in 1988 [49]. X.509 certificates are generated by

trusted certificate authorities and are stored in an X.500 global directory, which is used as

a central storage of digital certificates. X.500 is an ISO and ITU standard that defines the

structure of global directories [47]. Figure 3.4, which outlines the X.509 V3 certificate

components and corresponding overview, has been adapted from [47], [51], [48].

Chapter III Literature and Technology Review

32

Version

Certificate Serial Number

Algorithm Identifier

Issuer Name

Period of Validity

Subject Name

Public Key Information

Issuer Unique Identifier

Subject Unique Identifier

Extensions

Signature

Figure 3.4 – X.509 V3 Certificate

Version:

Differentiates the version of the X.509 certificate formats, which determines the

data stored in the certificate. X.509 has gone through two revisions since it was

made available in 1988. The Issuer Unique Identifier and Subject Unique

Identifier fields were introduced in X.509 V2, and the Extensions fields were

introduced in X.509 V3 in 1996.

Certificate serial number:

Specifies an integer value, unique within the issuing certificate authority, assigned

to the digital certificate by the certificate authority.

Algorithm identifier:

Identifies the algorithm and the associated parameters used to sign the digital

certificate.

Chapter III Literature and Technology Review

33

Issuer name:

Details the X.500 name of the certificate authority that created and signed the

digital certificate.

Period of validity:

Consists of two dates, specifying from what date and to what date the digital

certificate is valid.

Subject name:

Specifies the name of the entity who owns the digital certificate and the

private/public key pair.

Public key information:

Identifies the public key of the entity that owns the digital certificate in addition to

the algorithm and associated parameters used by the entity to sign messages.

Issuer unique identifier:

An optional ID introduced in X.509 V2. It is used to uniquely identify the

certificate authority.

Subject unique identifier:

An optional ID introduced in X.509 V2. It is used to uniquely identify the owner

of the private/public key pair.

Extensions:

A number of optional extensions were introduced in X.509 V3, consisting of an

extension identifier, a criticality indicator and an extension value. Extensions

provide a more flexible approach than adding additional fields to a fixed format.

Chapter III Literature and Technology Review

34

Signature:

The certificate authorities digital signature is composed of a hash code of the

other fields encrypted with the certificate authorities private key. In addition this

field contains the algorithm and the associated parameters used by the certificate

authority to sign the digital certificate.

3.4.3 Digital Signatures

A digital signature is an electronic signature, which allows the author of a digitally

represented message to sign it in such a fashion that the signature has properties similar to

a signature written in ink for the paper world [46]. It confirms the claimed identity of the

originator and guarantees the validity of the message.

Digital signatures must have the following properties [47] [49]:

 The receiver can verify the claimed identity of the originator.

 The sender cannot later repudiate the contents of the message.

 It must be verifiable by third parties to resolve disputes.

Digital signatures are realised through the use of public key encryption. Encrypting the

entire message with the originators private key or alternatively encrypting a hash code of

the message with the originators private key constitutes a digital signature [48], [50],

[51], [52]. In both cases, it is assumed that the recipient knows the originators public key

and uses it to decrypt the message or hash code. By successfully decrypting the message

or hash code with the originators public key, the recipient verifies both the originator and

the validity of the message, as only the corresponding public key in the private key pair

can decrypt the message or hash code. Figure 3.5 outlines the use of private and public

keys for authentication.

Chapter III Literature and Technology Review

35

Message is

encrypted using

the originators

private key

Message is

decrypted using

the originators

public key

Message and

digital

signature
Message

Message and

confirmation of

digital signature

Figure 3.5 – Digital Signature

Although the recipient can verify the author of the message and if the message has been

altered, they are unable to confirm if a third party has read the message. Digital

signatures are used solely to verify identity and content and alone do not provide a means

of confidentiality. To ensure confidentiality, the message should be further encrypted

using either symmetric or public key encryption strategies. Figure 3.6 outlines the use of

a digital signature and public key encryption.

Chapter III Literature and Technology Review

36

Message is

encrypted using

the originators

private key

Message is

encrypted using

the recipients

public key

Message and

digital

signature
Message

Encrypted

message and

digital signature

Message is

decrypted using

the recipients

private key

Message is

dencrypted using

the originators

public key

Message and

digital

signatureMessage

Encrypted

message and

digital signature

Message is

transfered over

the internet

Figure 3.6 – Digital Signature and Encryption

Digital signature standard:

The Digital Signature Standard (DSS) is a cryptographic standard based on Digital

Signature Algorithm (DSA), originally published by the National Institute of Standards

and Technology (NIST) in 1991, revised in 1993 and again in 1996 [47], [51], [48]. DSS

only provides authentication capability, unlike RSA and some DSA implementations that

provide both authentication and encryption. A summary of the message data, called a

message digest, is created through the use of a hash code. The message digest is used in

conjunction with the DSA algorithm and a private key in order to create a digital

signature. On receipt of the message and the message signature, the originator and

integrity of the messages is verified using the message digest, hash function, DSA

algorithm and originators public key.

Chapter III Literature and Technology Review

37

3.4.4 Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

Secure Sockets Layer (SSL) is a network protocol, which was originally developed by

Netscape Communications in 1995. However, the protocol later gained the support of

other Internet vendors and became the de-facto standard [47], [49], [50], [51], [55]. SSL

is used to ensure secure communication over the Internet and provides authentication of

the server, and where required the client, through the use of digital certificates in addition

to data confidentiality and integrity through the use of encryption technologies. SSL

operates at the transport layer, sits on top of the Transmission Control Protocol (TCP)

and is independent of higher-level application layer protocols such as Telnet, File

Transfer Protocol (FTP), Hypertext Transport Protocol (HTTP) etc. Both Netscape

Navigator and Internet Explorer along with the majority of web servers support SSL.

Users are able to confirm session security by the presence of ‘https://’ as opposed to

‘http://’ at the start of the URL at the top of the browser, or alternatively the presence of

the lock icon in the lower-left corner of the screen.

The Transport Layer Security (TLS) working group was formed in 1996 when SSL was

submitted to the IETF for standardisation [49]. The TLS protocol supersedes SSL and

although TLS is based on SSL 3.0 with a few extensions, the two protocols are not

interoperable. However TLS is backward compatible with SSL 3.0 [56].

SSL/TLS consist of the following four protocols:

 The Record Protocol

 The Handshake Protocol

 The Change Cipher Spec Protocol

 The Alert Protocol

Figure 3.7, which outlines the SSL components and corresponding overview, has been

adapted from [47], [57].

Chapter III Literature and Technology Review

38

Change

Cipher
Alert Handshake Application

Record Layer

TCP

Handles data

compression

Initialises secure

communication

Error handling
Initialise

communication

Application e.g HTTP, FTP

Handles

communication

with application

IP

Figure 3.7 – SSL/TLS Protocol

The Record Protocol:

The record protocol provides both confidentiality and integrity of data transferred

over the Internet. The record protocol is responsible for fragmentation and the

optional compression of data, the application of a message authentication code to

ensure integrity, the encryption of the data to ensure confidentiality, the addition

of header data and the transmission of the data in the form of a TCP packet. The

handshake protocol, change cipher spec protocol and alert protocol all sit on top

of the record protocol.

The Handshake Protocol:

The handshake protocol allows the server and the client to authenticate each other

and for both parties to agree on encryption and messaged authentication code

algorithms and exchange secret keys.

Chapter III Literature and Technology Review

39

The Alert Protocol:

The alert protocol is responsible for composing, compressing, encrypting and

conveying alert messages. An alert consists of two bytes, one to convey the

severity of the message and the other a description of the alert. Fatal alerts result

in the immediate termination of the connection.

The Change Cipher Spec Protocol:

The change cipher spec protocol generates a message with a single byte of value

1, generated by both and server and the client and used to convert the current state

to a pending state. This conveys to the recipient that subsequent transmissions

will be protected under the negotiated algorithm and keys.

Hyper Text Transport Protocol over Secure Sockets Layer (HTTPS) and File

Transfer Protocol over Secure Sockets Layer (FTPS):

HTTPS and FTPS are both application-layer protocols, which run on top of the

SSL protocol. HTTP is a request/response protocol used to retrieve web resources

from a server and render them in a client application. HTTPS is a secure version

of HTTP where requests and responses are encrypted using SSL or TLS prior to

being sent over the network. HTTPS uses port 443 as opposed to port 80, which

is used by the HTTP protocol. FTP is a file transfer protocol used to download

files from and upload files to an FTP server over the Internet. FTPS is a secure

version of FTP, which uses SSL or TLS to transfer data securely. FTPS uses port

990 as opposed to port 21, which is used by the FTP protocol.

Secure Hypertext Transfer Protocol (S-HTTP):

S-HTTP is an extension of HTTP, developed by Enterprise Integration

Technologies (EIT). S-HTTP should not be confused with the HTTPS protocol.

S-HTTP enhances the HTTP protocol with security services at the application

level and is an alternative to SSL, the socket level security protocol. S-HTTP

provides confidentiality, authentication, and data integrity, however is not tied to

any particular cryptography format or key infrastructure. SSL is designed to

Chapter III Literature and Technology Review

40

establish a secure session, whereas S-HTTP is designed to send secure individual

messages and are thus seen as complementary rather than competitive protocols.

3.4.5 Digital Identification

Digital identification is best described as the use of technology as a means of

authentication and authorisation. The simplest of the systems are based on

usernames/IDs and passwords, while others are based on special purpose hardware that

can measure unique distinguishing human characteristics. Earlier this thesis examined

the role played by digital certificates in message identification, thus this section

concentrates on passwords, physical tokens and biometrics identification techniques.

Usernames/IDs and passwords:

Identification based on ID/password combination is the most fundamental form of digital

identification. An ID and corresponding password are stored on the system for each user

and are used as a means of authentication and authorisation. Each user must enter their

password in order to gain access to the system. Personal Identification Numbers (PINs)

are a type of password that are used in every day life to access computer systems such as

secure buildings, voice mail systems, house alarms etc. Unfortunately passwords are

subject to various security threats such as dictionary attacks and network eavesdropping

[58]. In addition, Sutton [52] highlights the fact that a significant degree of responsibility

with regard to ensuring password confidentiality is attributed to the password owner.

Despite their well-known security weaknesses username password combinations remain

the most common authentication mechanism [55].

Physical tokens:

Physical tokens such as magnetic access cards are an alternative means of authentication

and authorisation, where access is granted based on the identity of the cardholder, which

is determined through the use of magnetic strip readers. Every card has a unique number,

which is associated with an identity. Physical tokens are used in order to gain access to

Chapter III Literature and Technology Review

41

buildings, rooms, toll bridges, gyms etc. Often passwords or PINs are associated with the

physical token, providing an extra level of security.

Biometrics:

Biometrics involves the use of measurable physical characteristics as a means of

authentication and authorisation. Fingerprints, retina, iris and voice prints can all be used

as a means of biometric identification. Ongoing biometrics and absolute identification

are two alternative biometric techniques. Ongoing biometrics involves recording

biometric information the first time an individual accesses a system, and on subsequent

accesses the new biometric is compared with the stored record. Absolute identification

involves the construction of a large database matching names and personal data with

biometrics [50]. Although biometrics is a costly and complicated means of authentication

and authorisation, they provide a higher level of security than passwords and physical

tokens.

3.4.6 Firewalls

A firewall is software or hardware, or a combination of both, configured to control access

between the Internet and hosts connected to a private network [49], [51]. Although

access to the Internet is crucial for the ASP model, it also constitutes as a security threat

to the organisation. The solution is to implement a firewall to filter all traffic to and from

the organisation. However, as Wool highlights in [59], “the protection that firewalls

provide is only as good as the policy they are configured to implement.” Figure 3.8

illustrates the use of a firewall through the use of an organisation network diagram.

Chapter III Literature and Technology Review

42

Figure 3.8 – Firewall network diagram

Packet Filtering Firewalls, Circuit-level Proxies and Application-level Proxies are the

most common types of firewalls [51]. A proxy prevents direct communication between

local node applications and external hosts.

Packet filtering firewalls:

Packet Filters inspect all packets sent to or from the local network and accept or reject the

packet based on the source IP address, destination IP address, port number and a pre-

defined set of rules. The network administrator is responsible for defining the firewall

filtering rules. Organisations may wish to block incoming packets from all IP addresses

and port 23 (used by TELNET), or one or more specified IP addresses and port 23, or

alternatively allow incoming packets from a combination of one or more specified IP

addresses and port 23. A default policy to either accept or reject a packet if no rule

exists, should also be configured.

Application-level proxies:

Application-level proxies intercept all traffic and relay data packets back and forth

between local node applications and an external host. Application-level proxies inspect

Chapter III Literature and Technology Review

43

the entire packet and relay or reject the packet based on the header information and the

contents of the packet.

Circuit-level proxies:

Circuit-level proxies intercept all traffic and relay data packets back and forth between

local nodes and external hosts. However, circuit-level proxies do not examine the

contents of the packet once the connection has been established. Circuit-level proxies

control the flow of data at the session layer.

3.4.7 Internet Protocol Security (IPsec)

In 1994, the Internet Architecture Board (IAB) issued a report entitled “Security in the

Internet Architecture”, which stated the need for better Internet security. The report

identified the need to secure network traffic from unauthorised monitoring and access

through the use of authentication and encryption mechanisms [51]. IP Security (IPsec) is

a set of protocols at the network layer, developed by the IETF, to facilitate the transfer of

packets securely over the Internet, a Local Area Network (LAN) or a Wide Area Network

(WAN) [50], [51]. IPsec works in conjunction with Internet Protocol version 4 (IPv4),

the standard version of IP used on today’s Internet and has been incorporated into

Internet Protocol version 6 (IPv6), the next generation IP [50]. IPsec consists of two

alternative protocols: Authentication Header and Internet Protocol (IP) Encapsulating

Security Payload (ESP) and supports two encryption modes: transport and tunnel.

Transport mode:

Transport mode encrypts only the data/payload of each packet. However, the header

remains unencrypted. In transport mode the IPsec header is inserted just after the IP

header and contains security information, primarily the security association identifier (i.e.

a simplex connection between two end points and associated security identifier), a new

sequence number, and possibly an integrity check of the payload [49].

Chapter III Literature and Technology Review

44

Tunnel mode:

Tunnel mode is the more secure option as it encrypts both the header and the

data/payload and is useful when the tunnel ends at a location other than the final

destination e.g. a firewall [49], [47], [51], [48]. In tunnel mode the entire IP packet is

encrypted and encapsulated in the body of a new IP packet with a completely new IP

header [49].

Figure 3.9, which provides an overview of IPsec protocol has been adapted from [51].

Architecture

ESP

Protocol

AH

Protocol

Encryption

Algorithm

Authentication

Algorithm

Figure 3.9 – IPsec Document Overview

IP Authentication Header (AH):

The IP Authentication Header (AH) provides authentication and integrity between

hosts or gateways [47]. Figure 3.10, which outlines the IP Authentication Header

(AH) transport mode, has been adapted from [49].

Chapter III Literature and Technology Review

45

IP Header AH TCP Header Payload + Padding

Authentication

Figure 3.10 – IP AH transport mode

IP Encapsulating Security Payload (ESP):

The IP Encapsulating Security Payload (ESP) encrypts the data and places it as

part of the ESP portion of the datagram/packet [47]. Figure 3.11(a) and 3-11(b),

which outline the ESP Header in transport and tunnel mode respectively, have

been adapted from [49].

IP Header ESP Header TCP Header Payload + Padding

Authentication

Authentication (HMAC)

Encryption

Figure 3.11(a) – ESP Header transport mode

New IP

Header

ESP

Header

TCP

Header
Payload + Padding

Authentication

Authentication (HMAC)

Encryption

Old IP

Header

Figure 3.11(b) – ESP Header tunnel mode

IPsec enhances electronic commerce built-in security protocols, secures remote access

and branch office connectivity over the Internet or a WAN through the use of a Virtual

Private Network (VPN) [51].

Chapter III Literature and Technology Review

46

3.4.8 Virtual Private Networks (VPNs)

Many national and international organisations lease telephone lines from telecom

organisations, in order to link multiple sites. Commonly known as a leased-line private

network, it provides a very secure means of communication, as intruders have to

physically wiretap the lines in order to compromise data [49]. Although leased-line

private networks are very secure they are also a very expensive. Figure 3.12, which

outlines a leased line private network, has been adapted from [49].

Figure 3.12 – Leased Line Private Network

The growth of the Internet provided a cheaper alternative to a leased line network

solution, at the expense of network security. An effort to resolve the security issues, with

regard to transferring sensitive data over the Internet, lead to the development of Virtual

Private Networks (VPNs). Each site hosts a firewall that creates a tunnel through the

Internet with each additional site using IPsec ESP tunnel mode. This tunnel provides a

means of secure communication between each of the nodes on each connected site. If

Chapter III Literature and Technology Review

47

site A and site B wish to communicate securely, their respective firewalls must negotiate

the connection and maintain the IPsec tunnel. Once the tunnel has been established,

machines on site A will appear as local machines to site B and vice versa. Machines on

site A and site B appear to be on the same network, thus the name Virtual Private

Network. Figure 3.13, which outlines a VPN, has been adapted from [49].

Figure 3.13 – Virtual Private Network

3.5 Middleware Security Technologies

Middleware refers to the software layer between the operating system, including the basic

communication protocols, and the distributed applications that interact via the network

[60]. This software infrastructure facilitates the interaction among distributed software

Chapter III Literature and Technology Review

48

modules [60]. With the advent of Web Services, developing seamless interoperability

between heterogeneous middleware technologies has become increasingly achievable

[61]. However, the diversity and openness of distributed applications systems have given

rise to questions of trust and security [62].

This section examines the security of three competing distributed object paradigms: The

Object Management Groups (OMG) Common Object Request Broker Architecture

(CORBA), Microsoft’s Distributed Component Object Model (DCOM) and Sun

Microsystems’ Remote Method Invocation (RMI).

3.5.1 Common Object Request Broker Architecture (CORBA)

Common Object Request Broker Architecture (CORBA) technology is an open standard

facilitating distributed computing in a heterogeneous environment. CORBA enables

programmers to design and implement distributed applications in a standardised manner

that guarantees portability and interoperability, following the object-oriented paradigm

[62]. The OMG devised the CORBA 1.0 specification in 1991 [63]. The OMG is a

consortium of more than 700 companies, which focuses on providing a common

framework for developing applications using object-oriented programming techniques.

The latest version CORBA 3.0 was released in 2002 [64].

The central component in the CORBA architecture, the Object Request Broker (ORB),

was designed to provide only core functionality and consequently the CORBA Security

Service Specification (CORBAsec), resides outside the ORB [62], [65]. CORBAsec

defines a collection of core security interfaces, which are written in a consistent Interface

Definition Language (IDL) [65]. The security interfaces that define services for

authentication, confidentiality, integrity, access control, auditing and non-repudiation

[62], are designed to ensure a reasonable level of security of a CORBA-compliant system

as a whole [66]. In addition, CORBAsec describes an array of interfaces that can be used

for the crucial task of security management/administration [62].

Chapter III Literature and Technology Review

49

CORBAsec provides three distinct levels of increasing functionality:

 Level 0, which was not part of the specification in the beginning, integrates

SSL into CORBA [62].

 Level 1, provides all the abovementioned security measures except for non-

repudiation. This is done in such a way that the applications running on top of

the CORBA system are not aware of the security features provided underneath

[62].

 Level 2 provides all the abovementioned security measures including non-

repudiation. Level 2 deals with those applications that are security aware and

that are consequently in a position to interact with CORBAsec in order to

specify the exact security features used [62], [67].

3.5.2 Distributed Component Object Model (DCOM)

DCOM is an extension of the Component Object Model (COM). COM objects are

discrete components, each with a unique identity, which expose interfaces that allow

applications and other components to access their features. DCOM interfaces are written

in the Microsoft’s interface definition language, the Object Definition Language (ODL)

[68]. DCOM makes COM objects location independent and adds security and

multithreading to COM [65]. Although DCOM hides many complexities of client server

application development it has proven difficult to deploy in corporate environments

where communication is performed across firewalls [69].

DCOM is designed with built in security. The NT LAN Manager (NTLM) and the

Microsoft Transaction Server (MTS) authenticate users and authorise checking via

Access Control Lists (ACL). The Microsoft Crypto Application Programming Interface

(MS CryptoAPI) provides both data encryption and integrity, while the Authenticode

SDK uses digital signatures to provide non-repudiation [65]. On the downside DCOM

uses a binary format for method invocations, and because firewalls don't understand the

content of the exchanged binary packages, they view the packages as a potential attack

Chapter III Literature and Technology Review

50

and block the calls [70]. Though there is a way to overcome this limitation, the solution

is regarded as weakening security [69]. These problems are addressed by a new

framework, which is known formally as SOAP.

3.5.3 SOAP

SOAP is a lightweight, operating system independent XML-based messaging protocol

used to encode the information in Web Service request and response messages before

sending them over a network. Initially SOAP was an acronym for ‘Simple Object Access

Protocol’, however in June 2003 the World Wide Web Consortium (W3C) dropped this

acronym as it was considered to be misleading. SOAP is based on two common

protocols: XML which is used as an encoding scheme for request and response

parameters of the method calls and HTTP which defines how messages are formatted and

transmitted [71]. While SOAP offers obvious benefits in the world of interoperability, it

comes at a price of performance degradation and additional development efforts required

for implementation of features missing from SOAP, such as security and state

management [69].

The Web Services Security (WSS or WS-Security) standard outlines a standard set of

SOAP extensions that facilitates the implementation of security token propagation,

message integrity and message confidentiality. WS-Security is highly flexible and

facilitates the construction of a wide variety of security models including PKI, kerberos

and SSL. Specifically WS-Security provides support for multiple security tokens,

multiple trust domains, multiple signature formats and multiple encryption technologies

[72].

Chapter III Literature and Technology Review

51

3.5.4 Remote Method Invocation (RMI)

RMI is a set of protocols developed by Sun Microsystems' JavaSoft division that enables

Java objects to communicate remotely with other Java objects. RMI has many of the

same features of other remote procedure call (RPC) systems, letting an object running in

one Java virtual machine make a method call on an object running in another, perhaps on

a different physical machine [73][74]. RMI uses the Java Remote Method Protocol

(JRMP) for remote Java object communication. RMI is a relatively simple protocol,

however unlike more complex protocols such as CORBA and DCOM, RMI only works

with the Java programming language. However, Java RMI over the Internet Inter-Orb

Protocol (RMI-IIOP) gives you RMI ease of use coupled with CORBA/IIOP language

interoperability. Like RMI, RMI-IIOP provides flexibility by allowing graphs of objects

to be serialised and transferred as pass-by-value method parameters. Like CORBA, RMI

over IIOP is based on open standards defined with the participation of hundreds of

vendors and users in the Object Management Group [75].

As RMI sits on top of the Java Virtual Machine it leverages Java’s built-in garbage

collection, security, and class-loading mechanisms [74]. The RMISecurityManager is an

example security manager, which implements security policies similar to those provided

by the security manager for applets, java applications included in a HTML page, which

run in a browser [74]. It determines whether methods are invoked locally or remotely

and protects against potentially unsafe operations [76], by providing a mechanism to

“sandbox” the execution of downloaded code, so that it cannot adversely affect the local

machine [74]. Applications must either define their own security manager or use the

RMISecurityManager. The Java security manager thus facilitates the definition of a fine-

grained security policy for both RMI client and server applications. It is worth noting

that Enterprise JavaBeans (EJB) (a component architecture for multi-tier client/server

systems) and Jini (an open architecture that enables the connection and sharing of

devices, such as printers and disk drives, on a network) are both built on top of RMI.

Chapter III Literature and Technology Review

52

3.6 Platform Security

The J2EE platform provides a secure development and runtime environment for Java

applications. “Data type checking at compile-time and automatic memory management

leads to more robust code and reduces memory corruption and vulnerabilities. Bytecode

verification ensures code conforms to the JVM specification and prevents hostile code

from corrupting the runtime environment. Class loaders ensure that untrusted code

cannot interfere with other Java programs” [77].

The original Java platform provided two distinct levels of security. Local code was

provided full access to vital system resources, while remote code was provided limited

access to resources inside the sandbox. The platform was later updated to provide remote

code, signed by a trusted entity, the same level of security as local code. Today the Java

platform provides a much more fine-grained approach. All code regardless of whether it

is local or remote can be subjected to a security policy [78]. The Java platform provides

a set of Application Programming Interfaces (APIs) spanning several major security areas

including cryptography, public key infrastructure, authentication, secure communication,

and access control. This section examines how the aforementioned APIs supplement

Java’s core security architecture.

3.6.1 Java Authentication and Authorisation Service (JAAS)

Java Authentication and Authorisation Service (JAAS) is composed of a set of APIs that

enable applications to both authenticate and enforce access controls upon users or entities

such as services. JAAS authentication is performed in a pluggable fashion, which

permits Java applications to remain independent from underlying authentication

technologies [79]. Java applications interact with JAAS through an object called the

LoginContext. The LoginContext, in turn, communicates with a login module, which is

specified at run time and is responsible for implementing and performing the

authentication. Because the LoginContext never changes and the login module exposes a

Chapter III Literature and Technology Review

53

standard interface, no code change or recompilation is required to change authentication

algorithms [80]. JAAS provides some reference LoginModule implementations, such as

the JndiLoginModule, the NTLoginModule and the UnixLoginModule.

Once the user has been authenticated, the JAAS authorisation component works in

conjunction with the existing Java access control model to protect access to sensitive

resources. JAAS access control decisions are based on who is running the code, in

addition to existing code-centric access controls [80] [81]. Once a user or entity, has

been authenticated using JAAS, an associated subject is created. A subject is comprised

of a set of principals, where each principal represents an identity for that user or entity.

Permissions can be granted in the Java security policy for specific principals. For each

subsequent security-checked operation, the Java runtime environment will automatically

determine if the security policy grants the required permission to a principal associated

with the authenticated subject [82].

3.6.2 Java Cryptography Extension (JCE)

Java Cryptography Extension (JCE) provides both a framework and implementations for

encryption, key generation and key agreement, and Message Authentication Code (MAC)

algorithms. JCE provides support for symmetric, asymmetric, block, and stream cipher

encryption [83]. JCE supplements core Java security such as digital signatures or one-

way hash functions. The Java Cryptography Architecture (JCA) is included in the Java

run-time environment distributed by Sun and includes algorithms to perform message

digests, create digital signatures, and generate key pairs. JCE extends the JCA by

providing algorithms to generate single keys and secret keys in addition to encryption and

decryption cipher algorithms [84].

Chapter III Literature and Technology Review

54

3.6.3 Java Secure Socket Extension (JSSE)

Java Secure Socket Extension (JSSE) is a set of packages that enable secure Internet

communications. JSSE provides both a framework and an implementation for a Java

version of the SSL and the TLS protocols and includes functionality for data encryption,

server authentication, message integrity, and optional client authentication [85], [86].

JSSE ensures the secure passage of data between a client and a server running any

application protocol, including HTTP, Telnet, or FTP, over Transmission Control

Protocol over Internet Protocol (TCP/IP). By abstracting the complex underlying

security algorithms and "handshaking" mechanisms, JSSE minimises the risk of creating

subtle, but dangerous security vulnerabilities. In addition, it simplifies application

development by serving as a building block, which developers can integrate directly into

their applications [85].

3.7 Database Security

Bankers would be considered negligent if they locked a bank's outer doors and left the

vault's doors open at night. Likewise, it doesn't make sense for an organisation to lock

down the network and leave databases vulnerable [87].

Database systems are the primary data management technology used today by

organisations for both day-to-day operations and decision-making. Damage and misuse

of data held in database systems could have disastrous consequences on the entire

organisation [88]. It is essential that database systems are protected, not only from

external threats, but also from insider threats. An organisations database management

system should ensure the confidentiality, integrity and availability of data. In as ASP

environment, each client is provided access to the ASP solution software on a one-to-

many basis, therefore it is critical that the ASPs ensure each clients data is protected from

their competitors. In addition, auditing should be used to ensure that database security

policies, procedures, and safeguards are working as intended.

Chapter III Literature and Technology Review

55

3.7.1 Oracle

As databases contain extremely sensitive information, restriction of access through the

enforcement of strong authentication is one of first lines of defence. Oracle provides

strong authentication solutions leveraging on existing security frameworks such as

Kerberos and Public Key Cryptography [89], [90]. In addition, Oracle provides several

features to ensure data integrity whether in the case of system failure, human error, or

malicious attacks. These features include redo log files, rollback segments, and

LogMiner [91]. Oracle also supports the protection of selected data via encryption within

the database. Although encryption is not a substitute for effective access control, one can

obtain an additional measure of security by selectively encrypting sensitive data before it

is stored in the database [90].

A critical aspect of any security policy is maintaining a record of system activity to

ensure that users are held accountable for their actions. Oracle provides three standard

types of auditing: Structured Query Language (SQL) statement-level, privilege-level and

object-level auditing. Audit records can be written to the standard Oracle audit table, to

an operating system audit trail (dependent on operating system used), or to an external

file [92].

Based on industry standard best practices Sinha [89] provides the following guidelines

with regard to the configuration of Oracle9i in order to maximise its security features:

 Install only what is required.

 Lock and expire default user accounts.

 Change default user passwords.

 Enable data dictionary protection.

 Practice principle of least privilege.

 Enforce access controls effectively.

 Restrict network access.

 Apply all security patches and workarounds.

Chapter III Literature and Technology Review

56

3.8 Security Standards

The Open Standards Interconnect (OSI) security model 7498-2 and International

Standards Organisation (ISO) 17799 security standard are both relevant to this

examination of ASP security. OSI 7498-2 deals principally with network security,

whereas ISO 17799 is concerned predominately with information security.

3.8.1 OSI Security Model 7498-2

ISO who are credited with the development of the seven layer OSI network model 7498-

1, are also responsible for the development of the OSI security model 7498-2. The OSI

security model is also composed of seven layers (outlined in Figure 3.14) and provides a

high level view of network security. OSI 7498-2 defines a set of security services based

on generally agreed objectives and identifies the architectural levels at which they may be

provided [93][94].

Authentication

Access Control

Non – Repudiation

Data integrity

Confidentiality

Assurance / Availability

Notarisation / Signature

Figure 3.14 – OSI Security Model 7498-2

Chapter III Literature and Technology Review

57

3.8.1.1 Authentication

Authentication provides a means of verification of claimed identity at a point in time

[95]. Username/ID and password combinations are a basic means of authentication.

However, weak passwords may still result in unauthorised access. In order to protect

against unauthorised access in the form of brute-force attacks, it is recommended that

passwords be eight to ten characters and be composed of a combination of alphanumeric,

punctuation symbols and upper and lower case [96], [97], [98]. Digital signatures are

recommended when a higher degree of system security is required.

3.8.1.2 Access Control

Access control, is a means of authorisation, the process of granting individuals access to

system objects, based on their identity. Stergiou [99] defines access control as the

restricted admission to network services and resources for the users holding the

appropriate privileges. Access control lists are used to specify the users and

corresponding access rights e.g. read, write, execute etc., associated with individual

system objects. Alternatively, an access control list can be composed of a set of roles and

corresponding access rights for system objects, with individuals assigned to relevant

roles. Access to the ASP system and systems resources in particular should be restricted

to an absolute minimum.

3.8.1.3 Non – Repudiation

Non-repudiation is the concept of ensuring that a transaction cannot later be denied by

one of the parties involved i.e. the sender or recipient. Non-repudiation is analogous to

signing a letter and sending recorded delivery [95]. It acts as a counter measure against

fraudulent claims, denial of contracts and non-acceptance of debt liability. Digital

Chapter III Literature and Technology Review

58

signatures are a means of assuring non-repudiation, which is a legal requirement of many

e-business solutions.

3.8.1.4 Data Integrity

Data integrity is the process of ensuring the consistency and validity of both data stored

locally and data transferred over the network. It encompasses the protection of both the

user and signalling data from either accidental or malicious modifications [99]. An

efficient security policy should ensure the integrity of data by defining effective access

control lists and appropriate means of encryption. The use of encryption technologies

such as symmetric key encryption and public key encryption ensures the integrity of data

transferred over the Internet. Encryption is a form of cryptography with data being

encoded prior to being sent over the network.

3.8.1.5 Confidentiality

Confidentiality is the process of protecting the privacy of both data stored locally and

data transferred over the network. When data is exchanged over the network, both the

connection and data must be protected against unauthorised access and disclosure [99].

An efficient security policy should ensure the confidentiality of data by limiting local

access to authorised personnel and adapting the aforementioned encryption techniques to

protect the privacy of data transferred over the network.

3.8.1.6 Assurance / Availability

Assurance/availability is the process of ensuring the optimal accessibility and usability of

systems and the data stored therein [93], [94]. It is imperative that a breach of security

does not hinder system availability. Two different modes of protection are available:

Chapter III Literature and Technology Review

59

prevention; and detection and recovery using backup facilities [94]. A disaster recovery

plan is essential to an optimal speed of recovery in the event a security breach, thus

limiting its overall impact.

3.8.1.7 Notarisation / Signature

Notarisation is the process where by a trusted third party acts as a legal representative to

guarantee the data integrity, peer authentication and non-repudiation services to the users

[99]. Notarisation certifies the validity of both digital data and digital signatures through

the use of Public Key Infrastructure (PKI). PKI is the allocation of digital signatures,

generally in the form of digital certificates, by trusted third parties known as certification

authorities. Notarisation provides a means of assurance of the accuracy of data content,

origin, time and delivery.

3.8.2 ISO 17799

ISO 17799 is composed of a comprehensive set of controls, designed by the ISO,

outlining best practices in information security and is composed of ten sections. Together,

the ten sections provide guidelines to organisations that strive towards optimal

information security. Figure 3.15, which outlines ISO 17799, has been adapted from

[100], [101].

Chapter III Literature and Technology Review

60

Security policy

System access control

Computer and operations management

System development and maintenance

Physical and environmental security

Compliance

Personnel security

Security organisation

Asset classification and control

Business continuity management

Figure 3.15 – ISO 17799

3.8.2.1 Security Policy

A security policy provides guidelines to management with regard to the documentation

and the implementation a set of rules to ensure the optimal security of information stored

locally and transferred over the network [100], [101]. Organisations have the option of

constructing a new security policy, altering an existing security policy to meet the

requirements outlined in ISO 17799, or alternatively they may purchase a security policy,

which has been written by a third party to comply with the requirements of the standard.

This activity involves a thorough understanding of the organisation’s business goals and

its dependence on information security [102].

Chapter III Literature and Technology Review

61

3.8.2.2 System Access Control

System access control is a means of protecting information by controlling access to

information systems. It is achieved through the use of an access control policy, which

provides a means of authorisation by granting individuals access to system objects and

functionality, based on their identity [100]. The detection of unauthorised activities is

achieved through the adoption of monitoring techniques.

3.8.2.3 Computer and Operations Management

Computer and operations management is responsible for ensuring the secure operation of

information processing facilities along with the integrity of system software and

information, thus preventing the loss, modification or misuse of information stored

locally or exchanged between organisations [101]. An organisation should document a

set of procedures for day-to-day operations and, in addition, the procedures to be used in

the event of a security disaster.

3.8.2.4 System Development and Maintenance

System development and maintenance is responsible for maintaining the security of

system software and data by ensuring that security is built into information systems.

Systems should be designed and implemented with a view to ensuring the privacy,

integrity and validity of information. Any changes to operating system software

packages should be strictly controlled [102].

Chapter III Literature and Technology Review

62

3.8.2.5 Physical and Environmental Security

Physical and environmental security is responsible for the prevention of unauthorised

access to computer facilities and the protection of information systems against theft,

tampering or damage [100]. An organisation should devise a physical security policy,

which controls access to the facility and the computer system.

3.8.2.6 Compliance

Compliance is concerned with avoiding breaches of any criminal or civil law, statutory,

regulatory or contractual obligations and of any security requirements and ensuring

compliance of the organisation with internal security policies and procedures [101].

3.8.2.7 Personnel Security

Personnel security involves, reducing the risk of human error, theft or fraud by providing

appropriate training with regard to security threats and risks, and organisation policies

and procedures [100], [101]. In addition, background checks of prospective employees

should be carried out, and confidentiality or non-disclosure agreements and employee

contracts should be used to protect the privacy of information.

3.8.2.8 Security Organisation

Security organisation involves the overseeing of information security across the

organisation and maintaining the security of information when the responsibility for

information processing has been outsourced to another organisation [100]. A central

body should be responsible for ensuring the accuracy of security policies, monitoring

Chapter III Literature and Technology Review

63

security activity and for the continuous improvement of information security throughout

the organisation.

3.8.2.9 Asset Classification and Control

Asset classification and control is responsible for maintaining the appropriate protection

of both corporate assets and information assets [100]. All assets within the organisation

should be analysed and classified according to their sensitivity and criticality to ensure

the appropriate access procedures are applied [102].

3.8.2.10 Business Continuity Management

Business continuity management counteracts interruptions to business activities and to

critical business processes from the effects of major failures or disasters [100]. A

business continuity process should identify security risks and threats, analyse the

likelihood of the organisation being exposed to these threats, analyse the effects to the

business if exposed to these threats and develop and test a business continuity plan to

minimise impact.

Chapter III Literature and Technology Review

64

3.9 Chapter Summary

Security in the context of Application Service Provision (ASP) is multifaceted, requiring

an analysis of the security models across all tiers of the service architecture. However,

the discrete security components must not be analysed in isolation, but should form part

of a holistic security model.

This chapter provided an overview of the ASP model by drawing comparisons with

traditional technology models, such as time-sharing and outsourcing. It examined ASP

security in general and furthered this analysis by reviewing the application, middleware

and data layers of the service architecture. This was achieved through the analysis of

application, middleware, platform, database and network security technologies.

Finally it examined security policies, disaster recovery plans, service level agreements

and security standards in order to obtain a complete perspective of security in an

Application Service Provision (ASP) environment. It is hoped that this literature review

illustrates the importance of the privacy, security and integrity of data across all tiers of

the service architecture.

Chapter IV Case Study

65

Chapter IV : Case Study

4.1 Introduction

This chapter describes aspects of security with regard to the Application Service

Provision (ASP) billing prototype case study, formally known as Billing4Rent. The

Billing4Rent solution enables tier 3 and 4 network operators, content providers, service

aggregators and other genres of service providers to access state-of-the-art billing

functionality on a subscription or rental basis. The Billing4Rent solution was

implemented as part of a joint venture between The Telecommunications Software &

Systems Group (TSSG) at the Waterford Institute of Technology and the Informatics

Research Group at the Galway-Mayo Institute of Technology.

The Billing4Rent solution prototype is subdivided into three interconnected applications:

the Billing4Rent Ltd web application, the billing solution and an administration tool. In

addition to providing information about the ASP service, the web application provides a

means of accessing both the billing solution and the administration tool. The billing

solution provides Billing4Rent clients with a means to configure and maintain customer

and product details and to generate billing information in the form of invoices. The

administrator tool provides Billing4Rent employees with the ability to configure and

maintain Billing4Rent client details and to monitor both the security and the performance

of the billing solution.

4.2 Architecture

The ASP Billing4Rent solution prototype is composed of a number of JavaServer Pages

(JSP), Java servlets, enterprise beans and libraries, interfacing with an Oracle database.

The solution architecture was designed based on the Model-View-Controller (MVC)

Chapter IV Case Study

66

design pattern and the solution was deployed in a Java Platform Enterprise Edition

(J2EE) environment. The MVC architecture separates an application into three distinct

components so that modifications to one component can be made with minimal impact to

the others. The model encapsulates the application data, the view is responsible for

displaying the data stored in the model and the controller facilitates the exchange of data

between the model and the view.

4.2.1 Security Architecture

Figure 4.1 details the network architecture of the Billing4Rent ASP prototype. A

demilitarised zone (DMZ) segregates servers requiring external access from other

machines on the network. A DMZ is defined as a network that sits between the trusted

internal network and the untrusted external network [105]. External access to Hyper Text

Transport Protocol (HTTP), Hyper Text Transport Protocol/Secure Sockets Layer

(HTTPS), File Transfer Protocol (FTP), File Transfer Protocol /Secure Sockets Layer

(FTPS) and Simple Mail Transfer Protocol (SMTP) services on the DMZ network is

permitted through the outer firewall. Access to machines on the internal network is only

allowed from machines in the DMZ through the inner firewall. All Billing4Rent

hardware and communications equipment is located in a lockable room within the main

monitored, alarmed and secured campus building. The Billing4Rent ASP infrastructure

is further secured through the use of security cables, padlocks and other such devices.

Chapter IV Case Study

67

Figure 4.1 – Biling4Rent network architecture

As an additional measure of security, the network administrator ensures all machines on

the Billing4Rent network are protected against network attacks. All unused ports and

daemons are shutdown. Appropriate service packs and patches are applied, as soon as

they are made available. Finally, anti-virus and anti-spyware software are installed and

are updated periodically by the network administrator.

4.2.2 Solution Architecture

Figure 4.2 depicts the Billing4Rent ASP solution architecture, which was deployed in a

J2EE environment. Apache Tomcat accepts both HTTP and HTTPS requests. Tomcat

uses a set of Java packages known as, Java Secure Socket Extension (JSSE), to enable

secure Internet communications via HTTPS. The Billing4Rent application enforces strict

access control to both the billing solution and the administration tool through the use of

the dynamic Java Authentication and Authorisation Service (JAAS) framework. The

Billing4Rent application uses the java.SQL.DriverManager class, to open a Java

Database Connectivity (JDBC) connection to the tier 3 database. Jakarta FileUpload,

Chapter IV Case Study

68

JAMon and Tag libraries are used to support functionality required by the billing solution

and the administration tool.

Oracle 9i

Browser

J2EE Environment

HTTPS

Request

HTTPS

Response

JAASJSSE

Jakarta

FileUpload

Tomcat/

Catalina

D
ri

v
e
rM

a
n

a
g

e
r

H
T

T
P

S
e
s
s
io

n Billing Solution &

Administration tool

J
D

B
C

HTTP

Response

HTTP

Request

JAMon
Tag

Libraries

Billing4Rent Ltd. web application

Figure 4.2 – Biling4Rent solution architecture

4.3 Authentication and Authorisation

Authentication is defined as the verification of identity [81] i.e. you are who you say you

are. Authorisation is the process of granting or denying access to system resources based

on identity. It is essential that access to the billing solution, the administration tool and

associated functionality is restricted to authorised personnel. Due to the unpredictable

nature of the Billing4Rent project, the project team deemed the dynamic Java

Authentication and Authorisation Service (JAAS) framework the most suitable means of

performing authentication and authorisation. The JAAS framework simplifies Java

security development by adding a layer of abstraction between the Billing4Rent solution

Chapter IV Case Study

69

and the underlying authentication and authorisation mechanisms. JAAS achieves

implementation independence through an extensible framework of pluggable abstract

classes and interfaces to which specific implementations can be developed. The billing

solution and administration tool servlets and JSP pages have been designed to ensure that

the user has been authenticated and has the required permissions prior to rendering the

page on their browser. If an unauthenticated user tries to access a page, by typing the

path directly into address bar or using the back button, they will automatically be

redirected to the login page. If an unauthorised user tries to access a page, they will be

presented with a message indicating they do not have the privileges required to access the

page.

4.3.1 Authentication

JAAS authentication is used in order to determine who is currently executing Java code,

regardless of whether the code is running as an application, an applet, a bean or a servlet

[80] [81]. Figure 4.3, which provides a high-level overview of the JAAS architecture has

been adapted from [103]. The application layer code instantiates both the

CallbackHandler and the LoginContext objects. The CallbackHandler interacts with the

application to retrieve the data required to perform the authentication. The LoginContext

subsequently communicates with one or more, dynamically configured login modules,

which handle the actual authentication using the appropriate security infrastructure. Sun

Microsystems supplies a number of LoginModule implementations in the

com.sun.security.auth package i.e. JndiLoginModule, KeyStoreLoginModule,

Krb5LoginModule, NTLoginModule and UnixLoginModule. Alternatively, it is possible

to develop custom login modules that implements the LoginModule interface e.g. a

database login module.

Chapter IV Case Study

70

...

Application

CallBackHandler LoginContext

RdbmsLoginModule

JndiLoginModule

LDAP Server RDBMS Web Service

App Server

Security

Service

Kerberos

Authentication

Unix

Authentication

NT

Authentication

Biometric

Authentication

Login Modules

Pluggable and

stackable. Configured

as needed on a per

service basis

Security and

Authentication

Service

Figure 4.3 – JAAS high-level architecture

The following steps are required to implement authentication using the JAAS

framework:

 If required, implement custom LoginModule and CallbackHandler classes.

 If an implementation exists, instantiate the appropriate CallbackHandler object.

 Instantiate a LoginContext object passing in the CallbackHandler object, where

applicable, and the name of the index to the JAAS configuration file, in order to

determine which LoginModule object(s) should be used. The LoginContext is

responsible for instantiating the appropriate LoginModule object(s).

Chapter IV Case Study

71

 Perform authentication by calling the LoginContext object’s login() method. The

LoginContext subsequently calls each LoginModule object’s login() method.

Each login() method performs the authentication or enlists the help of a

CallbackHandler.

 If the login is successful, a new Subject object is instantiated and populated with

authentication details such as principals and credentials.

The Billing4Rent project team chose to authenticate user login details based on data

stored in an Oracle 9i database. The team implemented two login modules: a

RdbmsClientLoginModule and a RdbmsAdminLoginModule in the

com.B4R.library.security.JAAS package, to authenticate Billing4Rent clients and

administrators respectively. Figure 4.4 provides a high level overview of Billing4Rent

client authentication, constructed using Unified Modeling Language (UML) sequence

diagram components.

Chapter IV Case Study

72

:ClientLogin

clientlc:B4RClient

client = new

B4RClient()

cbh:PassiveCallbackHandler

lc:LoginContex

cbh = new

PassiveCallbackHandler()

:RdbmsClientLoginModule

login()

handle()

lc = new LoginContext()

LoginContext

clientlc =

Client.loginClient

lc.Login()

Figure 4.4 – Authentication Sequence Diagram

Figure 4.5 contains a snippet of code extracted from the B4RClient business class. The

B4RClient object is envoked from the ClientLogin servlet, when a client attempts to login

to the billing solution via the Billing4Rent client login JSP page. The clientID and

password, input by the client, and the login time, generated by the system at runtime, are

used to instantiate the passiveCallbackHandler. On instantiation the LoginContext

searches for the CLIENTORACLE configuration in a JAAS configuration file, named

jaas.config (Figure 4.6), to determine which login module(s) to load. The JAAS

configuration file name and path are configured in the Java.security file (Figure 4.7). The

B4RClient calls the LoginContext object’s login() method. The LoginContext

subsequently calls the RdbmsClientLoginModule object's login() method. The login()

Chapter IV Case Study

73

method performs the authentication by enlisting the help of the PassiveCallbackHandler

(Figure 4.8, Figure 4.9). If the login is successful, a new Subject object is instantiated

and populated with authentication details such as the username and password (Figure

4.10), otherwise an exception is thrown.

try {

// Use the clientid/password to initialise the callback handler

PassiveCallbackHandler cbh = new PassiveCallbackHandler(clientId,

password, loginTime);

// Create a new loginContext

LoginContext lc = new LoginContext("CLIENTORACLE", cbh);

// Attempt authentication

lc.login();

} catch (LoginException ex) {

throw new LoginException(new StringBuffer("[B4RClient] ")

 .append(ex.getMessage())

 .toString());

} catch (Exception e) {

throw new LoginException(new StringBuffer("[B4RClient] ")

 .append(e.getMessage())

 .toString());

}

Figure 4.5 – Extract from the B4RClient business object

Chapter IV Case Study

74

4.3.1.1 Login configuration file

The login configuration file contains one or more <LoginModule> specification entries.

Figure 4.6, an extract from the jass.config login configuration file, contains an Oracle

(CLIENTORACLE) <LoginModule> specification entry. The structure of each entry in

the login configuration file takes the following format:

<name> {

 <LoginModule> <flag> <options>;

 <LoginModule> <flag> <options>;

 …

};

The <name> property is an index into the JAAS configuration and is used by the

LoginContext to retrieve authentication details. The <LoginModule> property is the full

path of a class that implements the LoginModule interface. The <flag> property indicates

whether success of the LoginModule is required, requisite, sufficient or optional. If only

one LoginModule is configured, the <flag> property must be set to required. The

<options> property specifies a list of name-value-pairs, which are passed to the

corresponding LoginModule. Each login configuration file entry facilitates the use of

multiple entries, e.g. optional additional <LoginModules>, <flag> and <option>

properties. The login configuration file can be specified either on the command line or in

the Java security properties file. As the ASP billing solution was designed around a web

interface, the Billing4Rent project team specified the login configuration file in the Java

security properties file. Figure 4.6 defines the RdbmsClientLoginModule in the

com.B4R.library.security.JAAS package and a number of configuration options. The

debug flag, oracle database URL, oracle driver, oracle username and oracle password

properties are all defined as name-value-pairs required by the RdbmsClientLoginModule

to perform authentication.

Chapter IV Case Study

75

CLIENTORACLE {

com.B4R.library.security.JAAS.RdbmsClientLoginModule required debug="false"

url="jdbc:oracle:thin:@localhost:1521:B4R"

user="SYSTEM"

pass="research"

driver="oracle.jdbc.driver.OracleDriver";

};

Figure 4.6 – Extract from jaas.config

4.3.1.2 Java security file

The Java security manager uses the master security properties file, Java.security, to

enforce security based on what code is running and, more importantly, who is running the

code. Figure 4.7, an extract from the java.security file, specifies the name and the

location of the default login configuration file. It is worth noting that it is possible to

specify several login configuration files by incrementing the numeric value of the

property e.g. login.config.url.1, login.config.url.2, login.config.url.3 etc. If more that one

login configuration file is specified, the security manager concatenates the files into a

single login configuration file.

Default login configuration file

login.config.url.1=file:${java.home}/lib/security/jaas.config

Figure 4.7 – Extract from java.security

Chapter IV Case Study

76

4.3.1.3 PassiveCallbackHandler

Callbacks provide the JAAS framework with the ability to interact with the calling

application to retrieve specific authentication data, such as usernames and passwords, or

to display certain information, such as error and warning messages. Figure 4.8 contains a

snippet of code extracted from the RdbmsClientLoginModule class library, which

initialises a Callback array with a NameCallback, a PasswordCallback and a

TextInputCallback, and passes this array as a parameter to the handle() method of the

CallbackHandler.

// Setup default callback handlers.

Callback[] callbacks = new Callback[] {

 new NameCallback("Username: "),

 new PasswordCallback("Password: ", false),

 new TextInputCallback("LoginTime: ")

};

callbackHandler.handle(callbacks);

String username = ((NameCallback)callbacks[0]).getName();

String password = new String(((PasswordCallback)callbacks[1]).getPassword());

 ((PasswordCallback)callbacks[1]).clearPassword();

String loginTime = ((TextInputCallback)callbacks[2]).getText();

Figure 4.8 – Extract from the RdbmsClientLoginModule class library

From a software development perspective, there are various means of communicating

with a user, e.g. command-line, Graphical User Interface (GUI), web interface. In order

to provide independence from the different means of user interaction, the LoginModule

invokes a CallbackHandler in the javax.security.auth.callback package to perform the

user interaction and obtain the requested information. As the Billing4Rent solution was

built around a web interface, the Billing4Rent project team implemented a

PassiveCallbackHandler. Figure 4.9 contains a snippet of code extracted from the

Chapter IV Case Study

77

PassiveCallbackHandler class library. The constructor takes a username/userID and

password, retrieved from the user via the JSP login page, and a system generated login

time, so its handle() method does not have to prompt the user for input. The

PassiveCallbackHandlers handle() method uses the username/userID, password and login

time, that were supplied to the constructor, to popluate the NameCallback,

PasswordCallback and the TextInputCallback respectively.

/**

* Assigns the username and password input via login page

* to local variables.

*

* @param user the username to be authenticated.

* @param pass the password to be authenticated.

* @param loginTime System generated login time

*/

public PassiveCallbackHandler(String user, String pass, String loginTime) {

 this.username = user;

 this.password = pass.toCharArray();

 this.loginTime = loginTime;

}

/**

* Handles the specified set of Callbacks. Uses the

* username and password that were supplied to our

* constructor to popluate the NameCallback and

* PasswordCallback.

*

* @param callbacks array of callbacks to handle.

* @throws IOException if an input or output error occurs.

* @throws UnsupportedCallbackException if the callback

* is not an instance of NameCallback or PasswordCallback.

Chapter IV Case Study

78

*/

public void handle(Callback[] callbacks)

 throws java.io.IOException, UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 // Check if this is a NameCallback

 if (callbacks[i] instanceof NameCallback) {

 ((NameCallback)callbacks[i]).setName(username);

 // Check if this is a Password Callback

 } else if (callbacks[i] instanceof PasswordCallback) {

 ((PasswordCallback)callbacks[i]).setPassword(password);

 // Check if this is a Password Callback

 } else if (callbacks[i] instanceof TextInputCallback) {

 ((TextInputCallback)callbacks[i]).setText(loginTime);

 // Otherwise throw an unsupported callback exception

 } else {

 throw new UnsupportedCallbackException(

 callbacks[i],

 "[PassiveCallbackHandler] Callback class not supported");

 }

 }

}

Figure 4.9 – Extract from the PassiveCallbackHandler class library

4.3.1.4 Subject, principals and credentials

If the login is successful, a new Subject object is instantiated and populated with

authentication details such as the username and password. A Subject object represents a

group of related information for a single entity such as a person or an organisation. The

Subject is composed of principals, one or more identities, and corresponding credentials,

one or more security-related attributes, e.g. passwords and cryptographic keys.

Chapter IV Case Study

79

Credentials are classed as either private containing sensitive information, or public

containing information intended to be shared. Figure 4.10 contains a snippet of code

extracted from the RdbmsClientLoginModule class library, which stores the principals

and credentials in temporary variables. Two RdbmsAdminPrincipal objects are created

for the client, based on the client’s full name and role identities, both of which are

extracted from the database. In addition, a RdbmsPrivateCredential object and a

RdbmsPublicCredential object are created to store the user’s password and public key

certificate respectively. Both the public and the private credentials are also extracted

from the database. The RdbmsAdminPrincipal, RdbmsPublicCredential and

RdbmsPrivateCredential objects are stored temporarily in private vectors.

p = new RdbmsAdminPrincipal(new StringBuffer(dbFname)

 .append(" ")

 .append(dbLname)

 .toString());

this.tempPrincipals.add(p);

p = new RdbmsAdminPrincipal(dbRole);

this.tempPrincipals.add(p);

publicCredential = new RdbmsPublicCredential();

publicCredential.setProperty("credential", dbCredential);

this.tempPublicCredentials.add(publicCredential);

privateCredential = new RdbmsPrivateCredential();

privateCredential.setProperty("password", dbPassword);

this.tempPrivateCredentials.add(privateCredential);

Figure 4.10 – Extract from the RdbmsClientLoginModule class library

Chapter IV Case Study

80

Finally, the data stored in the temporary vectors is added to the Subject objects principals

and credentials members (Figure 4.11).

subject.getPrincipals().addAll(tempPrincipals);

subject.getPublicCredentials().addAll(tempPublicCredentials);

subject.getPrivateCredentials().addAll(tempPrivateCredentials);

Figure 4.11 – Extract from the RdbmsClientLoginModule class library

4.3.2 Authorisation

JAAS authorisation enables system administrators to ensure that users have the

appropriate permissions to perform required actions and access requested resources.

JAAS extends the existing Java security architecture that uses a security policy to specify

what access rights are granted to executing code. JAAS enables the administrator to

grant access rights based on who is running the code, in addition to what code is running

[80], [81]. After the client has been authenticated, a Subject object is instantiated and

populated with authentication details such as principals and credentials. A Subject is

comprised of one or more principals, where each principal represents an identity for that

user or entity and a set of credentials. A credential is taken to represent any object used

to perform authorisation, e.g. a certificate, password, or kerberos ticket. The Java

security manager uses a policy file to associate authenticated principals with permissions.

If a principal associated with a particular Subject object has the required permission, then

the action is permitted, otherwise the action is denied and a SecurityException is thrown.

4.3.2.1 Policy file

The security policy, used by tomcat and implemented by the Java security manager, is

configured in the $CATALINA_HOME/conf/catalina.policy file. The catalina.policy file

Chapter IV Case Study

81

is used instead of the java.policy file, located in the Java development kit (JDK) systems

directory, for web applications. Figure 4.12 contains an extract from the catalina.policy

file used by the Billing4Rent case study. The entries in the catalina.policy file adhere to

the following format:

grant <signedBy "signer_names">, <codeBase "URL">, <principal "principal name"> {

 permission permission_class_name "target_name", <"action">,

 <signedBy "signer_names">;

 permission permission_class_name "target_name", <"action">,

 <signedBy "signer_names">;

 …

};

Each ‘grant’ entry contains one or more permission sub entries. The <signedBy>,

<codeBase> and <principal> properties are optional. The <permission> property is

composed of the full path of a Permission class, the actual permission specified by the

target name, and where required, the action, e.g. type of file access permitted. The Java

API provides several subclasses of the java.security.permission class. For example,

AllPermission, BasicPermission and FilePermission. Alternatively, it is possible to

extend the java.security.permission class to handle the type of authorisation required.

As the ASP billing solution was designed around a web interface, the Billing4Rent

project team implemented a java.security.permission class, URLPermission, in order to

permit or deny access to URLs. The URLPermission class, which resides in the

com.B4R.library.security.JAAS package, extends the java.security.permission class. The

URLPermission class is capable of validating both absolute paths and wild cards, i.e.

paths that ends in ‘/*’.

Chapter IV Case Study

82

grant Principal com.B4R.library.security.JAAS.RdbmsAdminPrincipal "admin" {

 permission com.B4R.library.security.JAAS.URLPermission "/b4r/admin/*";

};

Figure 4.12 – Extract from catalina.policy

4.3.2.2 Privileged actions and the security manager

After the client has successfully logged into Billing4Rent, a Subject object is instantiated

and populated with authentication details such as principals and credentials. For each

subsequent page request, the application calls the Subject classes static doAsPrivileged()

method, in order to determine if the client has the privileges required to access the

resource. Figure 4.13 provides a high level overview of Billing4Rent client authorisation,

constructed using Unified Modeling Language (UML) sequence diagram components.

Chapter IV Case Study

83

:ClientCheckPrivilagedAction lc:LoginContext

Subject mySubject =

clientlc.getSubject()

action:ClientURLAction

PrivilegedAction action =

new ClientURLAction()

Object result =

Subject.doAsPrivileged(action)

mySubject

:Subject

action.run()

Figure 4.13 – Authorisation Sequence Diagram

Figure 4.14 contains a snippet of code extracted from the ClientCheckPrivilagedAction

servlet, which retrieves a Subject object from a LoginContext, instantiates a

ClientURLAction object and passes both as parameters to the Subject class’ static

doAsPrivileged() method. The doAsPrivileged() method invokes the run() method of the

ClientURLAction object, which uses the Java security manager and the catalina.policy file

to verify the client has the required permissions. Figure 4.4 provides a high level

overview of client authentication, using Unified Modeling Language (UML) sequence

diagram components.

Chapter IV Case Study

84

// Retrieve the LoginContext from the session object

LoginContext clientlc = (LoginContext) session.getValue("clientlc");

// Retrieve LoginContext subject and store in subject object

Subject mySubject = clientlc.getSubject();

// Execute URLAction as an authenticated Subject

PrivilegedAction action = new ClientURLAction();

Object result = Subject.doAsPrivileged(mySubject, action, null);

// Convert result from object to boolean

boolean success = ((Boolean)result).booleanValue();

Figure 4.14 – Extract from the ClientCheckPrivilagedAction servlet

Figure 4.15 contains a snippet of code extracted from the ClientURLAction class library.

ClientURLAction is an implementation of the PrivilegedAction interface, which

determines if the user has the required permission to access the requested webpage. The

ClientURLAction object’s run() method retrieves a SecurityManager object if one exists

or alternatively instantiates a new SecurityManager object. It instantiates a

URLPermission object and passes it as a parameter to the SystemManager object’s

checkPermission() method. The SystemManager object’s checkPermission() method in

turn calls the AccessController object’s checkPermission() method which determines

whether access to the requested resource should be allowed or denied. This decision is

based on the permission to be validated and the security policy currently in effect. If

access is allowed, checkPermission() returns quietly, i.e. returns boolean true.

Alternatively an exception is thrown. Finally, the ClientURLAction object’s run() method

returns true if the client has the required permissions. Otherwise it returns false. It is

worth noting that the URLPermission class is capable of validating both absolute paths

and wild cards, i.e. paths that ends in ‘/*’.

Chapter IV Case Study

85

// If a security manager does not exist create a new security manager object

final SecurityManager sm;

if (System.getSecurityManager() == null)

 sm = new SecurityManager();

else

 sm = System.getSecurityManager();

// Create a new URLPermission object in order to permit/deny

// access to URL pages based on user permissions.

final Permission urlPerm = new URLPermission("/b4r/client/*");

// Throws a SecurityException if the requested access, specified

// by the given permission, is not permitted based on the security

// policy currently in effect. This method calls

// AccessController.checkPermission with the given permission.

sm.checkPermission(urlPerm);

Figure 4.15 – Extract from the ClientURLAction class library

4.4 Secure Login and navigation

In an ASP environment, both the security of the client login details and the security and

the integrity of the client data transmitted over the network are imperative. In order to

ensure the confidentiality and integrity of the solution data, the Billing4Rent project team

designed the billing solution to use HTTPS. HTTPS is a secure version of the HTTP

where requests and responses are encrypted using Secure Sockets Layer (SSL) or

Transport Layer Security (TLS) prior to being sent over the network. In the Billing4Rent

solution, the HTTPS protocol is used for the login to (Figure 4.16, Figure 4.17) and

navigation of both the billing solution and the administration tool. It is worth noting that

Chapter IV Case Study

86

as the Billing4Rent prototype was also designed to ensure optimal performance, access to

general information that does not warrant security is permitted via HTTP.

Figure 4.16 – Billing4Rent Client Login

Chapter IV Case Study

87

Figure 4.17 – Billing4Rent Client Login

The Billing4Rent solution was deployed in an Apache Tomcat environment, which uses a

set of Java packages known as Java Secure Socket Extension (JSSE), to enable secure

Internet communications. HTTPS is configured in Tomcat by creating a certificate

keystore (Figure 4.18) and defining a SSL HTTP connector in the server.xml

configuration file (Figure 4.19).

Keytool is Sun Microsystem’s command-line, key and certificate management utility. It

facilitates the administration of public/private key pairs and associated certificates for use

in self-authentication or data integrity and authentication services, using digital

signatures. A keytool is used to store the keys and certificates in a keystore - a special

file type that can hold keys and certificates. The keystore is subsequently encrypted with

a password for security.

Chapter IV Case Study

88

The following steps are required to create a new certificate keystore:

 Ensure the JAVA_HOME environment variable is configured to point to the Java

Development Kit (JDK).

 Open a command prompt and type the command in Figure 4.18. This command

will create a new file, in the home directory of the user under which it is run,

named ‘.keystore’. Alternative, it is possible to use the keystore parameter to

specify the complete pathname to the keystore file.

 Enter the keystore password when prompted. The default password used by

Tomcat is ‘changeit’, although it is possible to specify a custom password.

 Complete the general information with regard to this certificate, such as company,

contact name etc.

 Finally, enter the key password, which is the password specific to this certificate.

%JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA

Figure 4.18 – Call Keytool from the command line

To complete the Tomcat HTTPS configuration, uncomment the SSL HTTP connector

element in the server.xml configuration file and update the connector attributes. Change

the default port number from 8443, the port on which Tomcat listens for secure TCP/IP

connection, to 443 the default port for HTTPS communication. Figure 4.20, adapted

from [104] details several attributes, which may need to be updated based on the options

specified during creation of the keystore.

Chapter IV Case Study

89

<!-- Define a SSL HTTP/1.1 Connector on port 443 -->

<Connector port="443" maxHttpHeaderSize="8192"

 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

 enableLookups="false" disableUploadTimeout="true"

 acceptCount="100" scheme="https" secure="true"

 clientAuth="false" sslProtocol="TLS" />

Figure 4.19 – Extract from server.xml

Attribute Details

ClassName The fully qualified class name of the Java class that

implements this socket factory. Do not change the default

value.

ClientAuth Set this value to true if you want Tomcat to require all SSL

clients to present a client Certificate in order to use this socket.

KeystoreFile Add this attribute if the keystore file you created is not in the

default place that Tomcat expects (a file named .keystore in

the user home directory under which Tomcat is running). You

can specify an absolute pathname, or a relative pathname that

is resolved against the $CATALINA_BASE environment

variable.

KeystorePass Add this element if you used a different keystore (and

Certificate) password than the one Tomcat expects (changeit).

Protocol The encryption/decryption protocol to be used on this socket.

Do not change the default value.

Figure 4.20 – Connector properties adapted from [104]

As the Billing4Rent billing solution and administration tool both use HTTPS, the first

time a user attempts to access a secured page on the Billing4Rent site, they will be

presented with a dialog containing the details of the certificate and asked if they wish to

proceed with the transaction (Figure 4.21). If the user chooses to proceed, the server

Chapter IV Case Study

90

renders the appropriate login page on the browser. Otherwise the current page will

continue to be displayed.

Figure 4.21 – Accept/reject certificate dialog

4.5 Secure Logout

After the user has logged out of a password-protected system, they should be redirected

to the login page. Under no circumstances should a user be granted access to the system

without re-logging into the system. In order to achieve this level of security, it is

imperative that all pages of a password-protected site ensure the user has been

authenticated prior to the page being rendered on the browser. Secondly, pages must not

be cached on the client i.e. HTML documents should not be stored temporarily for ease of

retrieval later.

Chapter IV Case Study

91

4.5.1 Logout

When the user chooses to logout of either the billing solution or the administration tool,

the appropriate Subject object is destroyed and the user’s session is invalidated. Figure

4.22 contains a snippet of code extracted from the ClientLogout servlet, which retrieves

the LoginContext object from the session and calls the LoginContext object’s logout()

method. This method in turn invokes the logout() method of the

RdbmsClientLoginModule object (Figure 4.23). If logout is successful, the method

returns quietly, i.e. returns boolean true. Alternatively an exception is thrown. Finally,

the servlet removes both the LoginContext and the clientID from the HttpSession object,

invalidates the session and unbinds any objects coupled to it.

// Retrieve the LoginContext object from the session object

LoginContext clientlc = (LoginContext) session.getValue("clientlc");

client = (String) session.getValue("clientId");

// Call the LoginContext logout method

clientlc.logout();

// Remove LoginContext session attribute

session.removeAttribute("clientlc");

session.removeAttribute(client);

// Invalidate the session

session.invalidate();

Figure 4.22 – Extract from the ClientLogout servlet

Chapter IV Case Study

92

Figure 4.23 contains a snippet of code extracted from the RdbmsClientLoginModule class

library, which uses an Iterator to remove all of the principals and the credentials from the

Subject object.

// remove the principals the login module added

Iterator it = subject.getPrincipals(RdbmsAdminPrincipal.class).iterator();

while (it.hasNext()) {

 RdbmsAdminPrincipal p = (RdbmsAdminPrincipal)it.next();

 subject.getPrincipals().remove(p);

}

// remove the public credentials the login module added

it = subject.getPublicCredentials(RdbmsPublicCredential.class).iterator();

while (it.hasNext()) {

 RdbmsPublicCredential c = (RdbmsPublicCredential)it.next();

 subject.getPublicCredentials().remove(c);

}

// remove the private credentials the login module added

it = subject.getPrivateCredentials(RdbmsPrivateCredential.class).iterator();

while (it.hasNext()) {

 RdbmsPrivateCredential c = (RdbmsPrivateCredential)it.next();

 subject.getPrivateCredentials().remove(c);

}

Figure 4.23 – Extract from the RdbmsClientLoginModule class library

A primary requirement of the Billing4Rent solution is to ensure that sensitive data

remains confidential. After the user has logged out of either the billing solution or the

administration tool and the session has been invalidated, the user is redirected to the

appropriate login page. The billing solution and administration tool servlets and JSP

pages have been designed to ensure that the user has been authenticated prior to rendering

Chapter IV Case Study

93

the page on the user’s browser. If an unauthenticated user tries to access a page by typing

the path directly into address bar, they will automatically be redirected to the login page.

However, further action was required to ensure that the browsers back button could not

be used in order to access cached pages.

4.5.2 Disable Back Button

When the Back button is clicked, by default the browser does not request the page from

the web server. Instead, the browser simply reloads the page from its cache. The

solution to this problem was to disable caching on all billing solution and administration

tool servlets and JSP pages. This is achieved by appending headers to the HTTP

response using the HTTPServletResponse interface. Figure 4.24 contains a snippet of

code included at the top of all billing solution and administration tool servlets and JSP

pages.

response.setHeader("Cache-Control", "no-cache");

response.setHeader("Pragma", "no-cache");

response.setDateHeader("Expires", -1);

Figure 4.24 – Extract from Billing4Rent solution servlets

The Billing4Rent solution has been designed to ensure that the user must be authenticated

in order to access the billing solution or the administration tool and, in addition, the pages

are not cached. Therefore, attempts to use the back button after the user has logged out of

the system will not result in the page being rendered. If the user attempts to access a page

which was created using a POST request, a page expired message will be displayed

(Figure 4.25). If the user elects to refresh the page, they will be redirected to the

appropriate login page.

Chapter IV Case Study

94

Figure 4.25 – Page has Expired

Unfortunately, if the user elects to refresh the login page the username and password

parameters are resubmitted from cache by default and the browser has no means of

knowing that this is in fact a security breach. In order to resolve this issue, the login page

was updated to include a hidden field that is dynamically initialised at runtime with the

current system time. Each time a user attempts to login to the system, the current login

time is compared to the last successful login time for the corresponding user, which is

stored in the USER table in the database. If the current login time is greater than the last

successful login time, the user is permitted access to the system. Otherwise they are

redirected to the login page. Figure 4.26 contains a snippet of code extracted from the

RdbmsClientLoginModule class library, which stores the last successful login time in the

B4RCLIENT table in the oracle database.

Chapter IV Case Study

95

currentLoginTime = Long.parseLong(loginTime.trim());

if(dbLoginTime != null)

 previousLoginTime = Long.parseLong(dbLoginTime.trim());

if ((currentLoginTime > previousLoginTime) || (dbLoginTime == null)) {

 SQLUpdate = new StringBuffer("UPDATE B4RCLIENT set last_login_time = ")

 .append(loginTime)

 .append(" where CLIENTID = '")

 .append(user)

 .append("'")

 .toString();

 // Execute the sql insert statement

 stmt.executeUpdate(SQLUpdate);

}

Figure 4.26 – Extract from the RdbmsClientLoginModule class library

4.6 Encryption

Encryption is the translation of data into an unintelligible form through the use of a secret

code, in order to ensure confidentiality. Encrypted data is referred to as ‘cipher’ or

‘cipher text’, whereas unencrypted data is commonly known as ‘plain text’. Decryption

is the process of restoring data to its original form through the use of a secret code.

Encryption is an effective means of ensuring the privacy and integrity of information

stored locally or transferred over a network. In order to ensure the confidentiality and

integrity of data transferred over public networks, the Billing4Rent project team designed

the billing solution and the administration tool to use HTTPS. For an overview of the use

of HTTPS in order to facilitate secure login and navigation see section 4.4. It is equally

Chapter IV Case Study

96

important that sensitive data stored in secondary storage is protected from both external

and internal threats. Although encryption is not a substitute for effective access control,

one can obtain an additional measure of security by selectively encrypting sensitive data

before it is stored in the database [90]. The Billing4Rent solution has been designed to

encrypt solution passwords, using a one-way hash function, prior to inserting a password

into the Oracle database.

Figure 4.27 contains a snippet of code extracted from the Password class library, which

uses Message Digest algorithm 5 (MD5) encryption and BASE64 encoding to encrypt

passwords. An encrypt() method generates a MessageDigest object that implements

MD5. A message digest is the representation of text in the form of a single string of

digits. MD5 is a widely used cryptographic hash function with a 128-bit hash value. The

password is encoded into a sequence of bytes using the 8-bit Unicode Transformation

Format (UTF-8) character set. The result is subsequently used as a parameter into the

MessageDigest update() method. UTF-8 encodes each unicode character as a variable

number of 1 to 4 octets, where the number of octets depends on the integer value assigned

to the unicode character. The update() method fills the digest’s buffer with data. Once

the buffer contains all the necessary data the MessageDigest digest() method completes

the hash computation by performing final operations such as padding. Finally the

BASE64Encoder encode() method encodes the byte array into Base64 format. Base64

encoding takes three bytes, each consisting of eight bits, and represents them as four

printable characters in the American Standard Code for Information Interchange (ASCII)

standard.

Chapter IV Case Study

97

String ALGORITHM = "MD5";

MessageDigest md = null;

try {

 // Generate a MessageDigest object that implements

 // the specified digest algorithm.

 md = MessageDigest.getInstance(ALGORITHM);

 // Fill the digest's buffer with data to compute a

 // message digest from

 md.update(password.getBytes("UTF-8"));

 // Generate the digest. This does any necessary padding

 // required by the algorithm

 byte raw[] = md.digest();

 // Undocumented java class to Encode bytes to base64 to

 // get a string

 String hash = (new BASE64Encoder()).encode(raw);

 return hash;

} catch (Exception e) {

 throw new Exception(new StringBuffer("[Password] ")

 .append(e.getMessage())

 .toString());

}

Figure 4.27 – Extract from the Password class library

Subsequently when the user attempts to login to either the Billing4Rent billing solution

or the administration tool, the login module uses MD5 encryption and BASE64 encoding

to encrypt the password input by the user. Thus the username and password input by the

Chapter IV Case Study

98

user can be compared to the username and the encrypted password stored in the Oracle

database.

4.7 Strong Passwords

Access to both the Billing4Rent web application and computer systems is restricted to

authorised personnel through the enforcement of strong passwords. The stronger the

password is the more difficult it is for both humans and machines to figure it out. Best

practices denote that a strong password should be at least eight characters long and

should be composed of a combination of uppercase, lowercase, numeric and punctuation

characters [96], [97], [98].

Figure 4.28 contains a snippet of code extracted from the Password class library, which

ensures that all billing solution and administration tool passwords adhere to the above

guidelines. Firstly, a regular expression representing a strong-password is initialised

(Figure 4.28, Figure 4.29). A regular expression is a means of describing a set of strings

based on common characteristics shared by each string in the set. It is worth noting that

there are several different types of regular expression syntax e.g. Perl, Python and PHP.

The regular expressions in the Java java.util.regex package are very similar to Perl

syntax. Java regular expressions are based on perl regurlar expressions as a result of their

popularity and the power of the perl approach.

^(?=.*\\d)(?=.*[a-z])(?=.*[A-Z])(?=.*[^\\w])(?!.*\\s).*$

Figure 4.28 – Strong Password regular expression

Chapter IV Case Study

99

Construct Matches

^ The beginning of a line

(?=.*\\d) Must contain at least one digit

(?=.*[a-z]) Must contain at least one lower case character

(?=.*[A-Z]) Must contain at least one upper case character

(?=.*[^\\w]) Must contain at least one non word character

 (?!.*\\s) Allow whitespace characters

.* $ The end of a line

Figure 4.29 – Strong Password regular expression construct

Secondly, the password is validated to ensure that it is greater than eight characters long.

If the password is not greater than eight characters, the method returns false and an

appropriate message is displayed to the user (Figure 4.30). Thirdly, a Pattern object is

created and the regular expression is compiled into a pattern. The Pattern object is used

to create a Matcher object by calling the Pattern object’s matcher() method. Finally, the

matches() method attempts to match the entire input sequence against the pattern. If the

password does not match the strong password pattern, the method returns false and an

appropriate message is displayed to the user (Figure 4.31).

// Pattern to ensure a string is composed of a numeric ,

// an uppercase, a lowercase and a punctuation char

String pattern = "^(?=.*\\d)(?=.*[a-z])(?=.*[A-Z])(?=.*[^\\w])(?!.*\\s).*$";

try {

 // Passwords must be greater than 8 characters in length

 if(password.length() > 8) {

 success = true;

 }

 if(success) {

 // Create a pattern object and compile the given regular

 // expression into a pattern

Chapter IV Case Study

100

 Pattern p = Pattern.compile(pattern);

 // Create a matcher object that will match the given input

 // against this pattern

 Matcher m = p.matcher(password);

 // Attempt to match the entire input sequence against the

 // pattern on success return true otherwise false

 success = m.matches();

 }

 // return true/false

 return success;

} catch (Exception e) {

 throw new Exception(new StringBuffer("[Password] ")

 .append(e.getMessage())

 .toString());

}

Figure 4.30 – Extract from the Password class library

Chapter IV Case Study

101

Figure 4.31 – Billing4Rent administration tool add new client

4.8 Timeout

As a security measure, the Billing4Rent billing solution and the administration tool

timeout after a specified period of inactivity. In Apache Tomcat the session timeout is

configured in web.xml, the deployment descriptor of the web application. Alternatively,

the timeout can be specified using the HTTPSession object’s setMaxInactiveInterval()

method. The timeout internal, the time period a session can remain idle for before the

server terminates it is specified in minutes. Both the billing solution and the

administration tool have been configured to timeout after ten minutes of inactivity

(Figure 4.32). When either the billing solution or the administration tool timeout due to

inactivity the Subject object is destroyed, the session is invalidated and the user is

Chapter IV Case Study

102

presented with the login page. If the user tries to use the back button or type the path

directly into the browser they will be redirected to the login page.

<session-config>

 <session-timeout>10</session-timeout>

</session-config>

Figure 4.32 – Extract from Billing4Rent web.xml

4.9 File Upload

The Billing4Rent team elected to use a combination of Apache Commons FileUpload and

HTTPS in order to facilitate the secure uploading of client collateral. Figure 4.33

contains a snippet of code extracted from the ClientFileUpload servlet, which uses the

Apache Commons FileUpload package in order to provide the client with a means of

securely uploading electronic resources. Firstly, a DiskFileUpload object is instantiated

and used to parse the request, in order to obtain a list of items to stream to the web

application. Secondly, an Iterator object is used to loop through the list. If the list item

is an uploaded file, the list getName() method, which returns the full path of the file on

the client machine, is used to create a File object. The File object’s getName() method,

which returns only the file name, is subsequently used to create a new File object by

concatenating the full destination path with the filename. Finally, the uploaded file is

written to disk. Figure 4.34 and Figure 4.35 contain screenshots from the Billing4Rent

billing solution depicting the selection of the file to be uploaded and display of the said

file respectively. For security reasons, the uploaded file should be checked for viruses

prior to being written to disk. Symantec AntiVirus Corporate Edition can be configured

for real-time scanning and on-demand scans.

Chapter IV Case Study

103

// Create a new DiskFileUpload object

DiskFileUpload upload = new DiskFileUpload();

// Use the handler to parse this request

// Giving us a list of items from the request

List items = upload.parseRequest(request);

// Create an iterator object

Iterator itr = items.iterator();

while(itr.hasNext()) {

 FileItem item = (FileItem) itr.next();

 // Check if the current item is a form field or an uploaded file

 if(!item.isFormField()) {

 if(item.getName().equals("")){

 String msg = "File name required!";

 // Store error msg in in a request object

 request.setAttribute("msg", msg);

 // Forward to uploadFile jsp page

 dispatcher = getServletContext()

 .getRequestDispatcher("/client/clientFileUpload.jsp");

 dispatcher.forward(request,response);

 } else {

Chapter IV Case Study

104

 File fullFile = new File(item.getName());

 // Construct destination path for the file to be uploaded

 File savedFile = new File((new

 StringBuffer(getServletContext().getRealPath("/"))

 .append("images\\")

 .toString()), fullFile.getName());

 // Write the file to disk

 item.write(savedFile);

 }

 }

}

Figure 4.33 – Extract from the ClientFileUpload servlet

Figure 4.34 – Billing4Rent billing solution upload file

Chapter IV Case Study

105

Figure 4.35 – Billing4Rent billing solution file uploaded

4.10 Logging

In the event of a security breach, logging helps determine the extent of the damage

caused. Both the Billing4Rent billing solution and the administration tool have been

developed to support audit, error and security logging. After examining a number of

logging applications, the Billing4Rent development team elected to implement a custom

logging system, due to the unique nature of the Billing4Rent ASP logging requirements.

Figure 4.36 contains a snippet of code extracted from the ClientLogin servlet, which

concatenates a string using a StringBuffer object and uses a B4Rlogger object to add data

to the B4RSECURITYLOG table in an oracle database. The B4RSECURITYLOG table

is composed of the following fields: LOG_ENTRY, USER_ID, DATE_LOGGED,

STATUS, MODULE and LOG_MSG. The B4Rlogger object is used to manipulate the

error, audit and security logs. The error log details any errors that occur throughout the

Billing4Rent web application. The audit trail provides an overview of client activity, e.g.

Chapter IV Case Study

106

when they logged in and what actions they performed. Finally, the security log outlines

access to secure resources and the performance of operations deemed to be of a sensitive

nature.

securitymsg = new StringBuffer("Successfully logged in B4RClient [")

 .append(client)

 .append("] into b4r application")

 .toString();

log = new B4Rlogger(debug);

log.addToLogger("Sys Admin", "1", MODULE, securitymsg,

"B4RSECURITYLOG");

Figure 4.36 – Extract from the ClientLogin servlet

The administration tool provides Billing4Rent administrators with the ability to view and

delete logs, which are stored in audit, error and security tables in the oracle database.

Figure 4.37 provides a snap shot of the B4RsecurityLog, which can be filtered based on

the UserID, Date Logged or Status fields.

Chapter IV Case Study

107

Figure 4.37 – Security log

4.11 Prototype

The Billing4Rent solution prototype is subdivided into three interconnected applications:

the Billing4Rent Ltd. web application, the billing solution and the administration tool. In

this section, the author provides an overview of the technologies used and outlines the

functionality of each of the applications. Relevant Billing4Rent prototype screenshots

are included as appendix II.

The ASP Billing4Rent solution prototype is composed of a number of JSPs, Java servlets,

enterprise beans and libraries, interfacing with an Oracle database. The solution

architecture was designed based on the Model-View-Controller (MVC) design pattern

and the prototype was deployed in a J2EE environment. The prototype was developed in

order to facilitate the testing of security libraries and to optimise configuration. Due to

Chapter IV Case Study

108

the unpredictable nature of the Billing4Rent project, the prototype architecture was

designed to enable loosely coupled components to interact by using high-level

abstractions and established object oriented design principles and patterns. MVC is a

composite design pattern that can be used at both an architectural macro level and at a

finer grained micro level. The MVC architecture provides loose coupling by dividing the

application into three distinct components. Modifications to one component can be made

with minimal impact to the others. The model component encapsulates the application

data, the view component is responsible for displaying the data stored in the model and

the controller component facilitates the exchange of data between the model and the view

(Figure 4.38). A high level of abstraction was achieved by designing library classes to

implement interfaces and abstract classes and by developing polymorphism into the

design to facilitate loose coupling and change.

JSP Pages

Servlets

Enterprise

Beans

and Libraries
Oracle 9i

View

Controller

Model

Browser

J2EE Server Database Server

Request

Response

Figure 4.38 – Model-View-Controller architecture

Chapter IV Case Study

109

4.11.1 The Billing4Rent Ltd. Web Application

In addition to providing information about the ASP service, the Billing4Rent Ltd. web

application provides a means of accessing both the billing solution and the administration

tool. As the Billing4Rent prototype was also designed to ensure optimal performance in

addition to security, access to the Billing4Rent Ltd., is permitted via HTTP. As the

Billing4Rent billing solution and administration tool both use HTTPS, the first time a

user attempts to access a secured page on the Billing4Rent site, they will be presented

with a dialog containing the details of the certificate and asked if they wish to proceed

with the security transaction (Figure 4.39).

Figure 4.39 – Billing4Rent billing solution security alert

Chapter IV Case Study

110

4.11.2 The Billing Solution

The primary functionality of the Billing4Rent billing solution is to provide billing

functionality on a subscription or rental basis. The billing solution provides Billing4Rent

clients with a means to configure and maintain their customer and product details and to

generate billing information in the form of invoices (Figure 4.40).

Figure 4.40 – Billing4Rent billing solution

Figure 4.41 provides Billing4Rent clients with a means to view and update the data held

by Billing4Rent with regard to their organisation.

Figure 4.41 – Client Data menu

Chapter IV Case Study

111

Figure 4.42 allows Billing4Rent clients to manage their customer base. The ‘Display All

Customers’ menu option details all customers the client has configured to date. Customer

ID, company name, contact name and a field to indicate if this profile is enabled or

disabled are displayed for each customer. The company name links to a page containing

additional customer contact data such as address, email and phone number. The ‘Register

New Customer’ menu option allows the client to configure additional customers. The

‘Update Existing Customer’ menu option enables the client to select an existing customer

from a dropdown list. The client can thus update the corresponding customer details

displayed on the update customer form. The ‘Delete Customer’ menu option provides the

client with a means to delete one or more customers configured to date. However,

invoices associated with deleted customers are not removed from the system by default.

Figure 4.42 – Customers menu

Figure 4.43 facilitates the configuration of client products. The ‘Display All Products’

menu option displays a list of client products under the headings product ID, name, unit

charge and enabled flag. The flag is used to indicate which products are currently

enabled. Each product name can be used as a link to additional product data, such as

description, invoice string, tax percentage etc. The ‘Register New Product’ menu option

displays a form which can be used, by the client, to input new product details. The

‘Update Existing Product’ menu option allows the client to select a product, to be

updated, from a dropdown list. Subsequently, the selected product details are displayed

and the application provides the client with the ability to update one of more properties,

with the exception of the product ID. The ‘Delete Product’ menu option allows the client

to delete one or more products. As with the deletion of customers, associated invoices

are not deleted by default.

Chapter IV Case Study

112

Figure 4.43 – Products menu

Figure 4.44 provides Billing4Rent clients with a means to generate billing information in

the form of invoices. The ‘Display All Invoices’ menu option provides the client with the

ability to select from a drop down list of customers and displays a summary of invoices

generated to date for that customer. The invoice number provides a link to the

corresponding invoice header and line item details. The ‘Create New Invoice’ menu

option provides the client with the ability to select from a dropdown list of customers and

subsequently create an invoice for the selected customer. The invoice number and date

are generated automatically. The client must supply a corresponding purchase order and

must add one or more line items to the invoice. The ‘Delete Invoices’ menu option

provides the client with the ability to select from a dropdown list of customers and

subsequently facilitates the deletion of one or more invoices created for that customer.

Figure 4.44 – Invoices menu

The ‘File Upload’ menu option permits the secure uploading of client collateral. The

‘Logout’ menu option invalidates the session and redirects the client to the client login

page. For an in-depth look at the functionality provided by the Logout and File Upload

menu options see section 4.5 and 4.9 respectively.

Chapter IV Case Study

113

4.11.2.1 Privacy statement

In an ASP environment, the privacy protection of client information is critical. Figure

4.45 details the privacy practices of Billing4Rent Ltd. Users can access the privacy

statement by clicking the link at the bottom left hand corner of the client login tab.

The following provides and overview of Billing4Rents privacy statement:

 Billing4Rent respects the client’s right to privacy and upholds both the Privacy

and Electronic Communications Directive (Directive 2002/58/EC) and the Data

Protection Directive (Directive 95/46/EC).

 Billing4Rent takes all reasonable security steps to protect the information

provided by their clients.

 Billing4Rent will only process personal data with clear permission from the

client. Any data submitted to Billing4Rent will not be disclosed to a third party

without explicit and unambiguous consent.

 Registration is an entirely voluntary process.

 All registered clients have secure direct access to their own set of data. Clients

have the right to amend their own data if it contains errors, or if some data

requires updating.

 All registered clients have the right to de-register from Billing4Rent at any time.

Chapter IV Case Study

114

Figure 4.45 – Privacy Statement

4.11.2.2 Security statement

Figure 4.46 details the security practices of Billing4Rent Ltd. Users can access the

security statement by clicking the link at the bottom left hard corner of the Client Login

tab.

The following provides and overview of Billing4Rents security statement:

 Security and your privacy are of the utmost importance to Billing4Rent.

 Billing4Rent web services are only accessible through secured networks designed

to prevent unauthorised activity.

 Client data is stored on separate database machines that are further protected and

have no direct public access.

Chapter IV Case Study

115

 Clients must login using their username and password in order to gain access their

personal information. Provided clients keep their password secret their personal

information will be protected.

 The Billing4Rent web application uses encryption technology to ensure that the

personal information being passed between the client and Billing4Rent is

scrambled and therefore cannot be read or understood by third parties.

 Billing4Rent uses cookies to help strengthen security. A cookie is a piece of

information saved on a client machine by a web application. The cookies used on

the Billing4Rent web application allows the web-server to identify which page

they should send to the user next and to verify that the person who is asking for

the next page in the secure area is actually the same person who passed the

customer login.

Figure 4.46 – Security Statement

Chapter IV Case Study

116

4.11.3 The Administration Tool

The administration tool provides Billing4Rent employees with the ability to configure

and maintain Billing4Rent client details and to monitor both the security and the

performance of the billing solution (Figure 4.47).

Figure 4.47 – Billing4Rent Administration tool

Figure 4.48 provides Billing4Rent administrators with the ability to manage the

administration tool users. The ‘Display All Users’ menu option displays the name,

username, role and public credentials of all users configured to date. The profile field

indicates whether a profile is currently enabled or disabled. The ‘Register New User’

menu option allows the administrator to configure addition administration tool users.

The ‘Update Existing User’ and ‘Delete Users’ menu options enable the administrator to

update or delete existing users respectively.

Chapter IV Case Study

117

Figure 4.48 – User administration menu

Figure 4.49 facilitates the configuration of Billing4Rent clients. The ‘Display All

Clients’ menu option displays a list all clients configured to date. The ‘Register New

Client’ menu option allows the administrator to configure new clients. The password

configured by the administrator should be updated by the client the first time they access

the billing solution. The ‘Update Existing Client’ menu option enables the administrator

to update existing client details. Alternatively the client can update their details using the

billing solution ‘Update Client Data’ menu option. The ‘Delete Clients’ menu option

provides the administrator with a means to delete Billing4Rent clients. As a result all

invoices and products associated with this client are deleted by default.

Figure 4.49 – Client administration menu

Figure 4.50 provides Billing4Rent administrators with the ability to view statistical data

with regard to the billing solution.

Chapter IV Case Study

118

Figure 4.50 – Client administration menu

The ‘B4R Database Properties’ menu option provides information such as database name,

version, start time and status (Figure 4.51).

Figure 4.51 – B4R Database Properties

The ‘B4R Tablespace Properties’ menu option provides information about the tablespace

such as tablespace name, size, used space, free space and percentage used space (Figure

4.52).

Figure 4.52 – B4R Tablespace Properties

The ‘B4R Tablespace Properties’ menu option details the number of rows in each of the

tables in the B4R database (Figure 4.53).

Chapter IV Case Study

119

Figure 4.53 – B4R Table Sizes

The ‘Launch JAMon’ menu option opens a new window and displays performance data

with regard to the Billing4Rent billing solution e.g. page hits, access times and module

completion times (Figure 4.54). The performance monitor can be configured to monitor

servlets, JSP pages and specific sections of code.

Chapter IV Case Study

120

Figure 4.54 – JAMon performance monitor

Figure 4.55, the JAMon performance monitor provides the ability to view and delete the

audit, error and security logs for both the billing solution and the administration tool. For

an in-depth look at logging functionality provided see section 4.10.

Chapter IV Case Study

121

Figure 4.55 – JAMon performance monitor

Finally, the ‘Home’ menu option provides links to all pages in the Billing4Rent

administration tool and the ‘Logout’ menu option invalidates the session and redirects the

client to the administration tool login page. For an in-depth look at the functionality

provided by the Logout menu option see section 4.5.

4.12 Security Policy

The primary function of the Billing4Rent security policy is to outline guidelines for

ensuring optimal security of the ASP solution. The Billing4Rent security policy is an

ever-changing document, constantly amended to cater for updates to the organisation’s

systems and procedures. The Billing4Rent security policy is composed of a combination

of guidelines with regard to general security, physical security, host security, network

Chapter IV Case Study

122

security and data security. This section provides a high level overview of the

Billing4Rent security policy. For further information please see appendix III.

4.12.1 General Security

The general security section of the Billing4Rent security policy provides security

guidelines for the organisation. It describes the nature of the security policy and the

actions required in order to ensure the Billing4Rent solution adheres to security best

practices.

The general security section outlines the need to:

 Periodically audit the Billing4Rent infrastructure to ensure compliance with the

security policy for the Billing4Rent ASP solution.

 Maintain a complete architecture document that includes a full network

diagram of the Billing4Rent ASP environment, illustrating the relationship

between the ASP environment and any other relevant networks. The document

should include a full data flowchart detailing where client data resides, the

applications that manipulate it, and the security thereof.

 Provide the ability to disable all or part of the functionality of the ASP solution

should a security issue be identified.

 Perform non-intrusive network audits (basic portscans, etc.) randomly, without

prior notice, and both intrusive network and physical audits, with 24 hours

notice.

4.12.2 Physical Security

The physical security section details the protection of both ASP infrastructure and its

location against theft, tampering and damage, either intentional or not. It recommends

that Billing4Rent ASP infrastructure should be located in a physically secure data center.

Chapter IV Case Study

123

Access to the facility should be restricted to authorised personnel, through the use of

biometric scanners plus user pins or passwords. Closed Circuit Television (CCTV)

should be configured in order to monitor activities throughout the data center. The

infrastructure should be further secured physically, through the use of security cables,

padlocks and other such devises. In order to achieve optimal security, a CCTV policy

and an access control Policy should be devised and maintained. The CCTV policy should

detail the type of system used and security footage storage methods. The access control

policy should document stringent access control policies and procedures, outlining who is

authorised to enter the data center, in addition to who is authorised to access the

Billing4Rent ASP infrastructure.

4.12.3 Host Security

Host security is concerned with restricting access to the ASP solution to authorised

personal. Appropriate service packs and patches should be applied to the Billing4Rent

ASP operating systems and applications as soon as they are made available. The

corporate standard anti-virus/anti-spyware software should be installed on all

Billing4Rent machines. The anti-virus/anti-spyware site should be checked periodically

for a list of updates, which should be installed as they become available. Access to

Billing4Rent ASP solution should be restricted to authorised personnel by enforcing

strong passwords and ensuring the implementing of an account maintenance policy. In

order to facilitate the above Billing4Rent should document the following policies:

 Service packs/Patches policy

 Anti-virus/Anti-spyware policy

 Password policy

 Account maintenance policy

Chapter IV Case Study

124

4.12.4 Network Security

The network security section provides guidelines for both the protection of hosts on the

Billing4Rent network and the data transmitted over the Internet. The Billing4Rent ASP

solution firewall should be configured to filter undesired traffic between the Internet and

Billing4Rent ASP infrastructure. All unnecessary services running on the ASP

infrastructure should be disabled, by shutting down unused ports. Remote access to

Billing4Rent ASP solution hardware should be limited to an absolute minimum.

Billing4Rent should document in the Billing4Rent ASP Remote and Dial-in Access

Policies, standards for connecting to Billing4Rent's network from remote hosts. Data

sent over the Internet should be encrypted to ensure security and integrity of data being

transmitted as outlined in the Billing4Rent ASP Cryptography Policy.

4.12.5 Data Security

Data security is also concerned with ensuring the privacy and integrity of client data in an

ASP environment. Redundant Billing4Rent ASP hardware should be disposed of in an

appropriate manner. Software and data should be uninstalled and erased to guarantee that

sensitive data it is not accessible to unauthorised individuals. Billing4Rent ASP solution

software and the configuration of the Billing4Rent ASP environment should be tested

rigorously to ensure the security and the integrity of client data. ASP solution security

threats should be identified and the appropriate action should be taken to combat

unauthorised access to sensitive data.

Chapter IV Case Study

125

4.13 Chapter Summary

The ASP Billing4Rent solution prototype is composed of a number of JSPs, Java servlets

and Java libraries, interfacing with an Oracle database. The solution architecture was

designed based on the MVC design pattern and the solution was deployed in a J2EE

environment. The Billing4Rent solution tackles security on a number of fronts (Figure

4.56).

Solution Security Description

Architecture Solution configured to use a demilitarised zone (DMZ). The

DMZ segregates servers requiring external access from other

machines on the network.

Hardware Secure premises and the use of security cables and padlocks to

further secure Billing4Rent infrastructure.

Operating System Service packs, patches, anti-virus and anti-spyware installed and

kept up to date.

Authentication Implemented using the Java Authentication and Authorisation

Service (JAAS) framework and custom pluggable login module.

Authorisation Access control verified using Java Authentication and

Authorisation Service (JAAS) framework security policy and

URLPermission class.

Login and navigation Hyper Text Transport Protocol/Secure Sockets Layer (HTTPS)

encrypts network traffic.

Logout Subject object is destroyed and the user’s session is invalidated.

Data encryption Uses MD5 encryption and BASE64 encoding to encrypt

passwords.

Auditing Due to the unique nature of the Billing4Rent ASP logging

requirements, the Billing4Rent development team implemented

a custom logging system.

Chapter IV Case Study

126

Timeouts

The web applications timeout after ten minutes of inactivity.

The timeout is configured in web.xml, the deployment

descriptor of the web application.

Strong passwords

All passwords must be at least eight characters long and should

be composed of a combination of uppercase, lowercase,

numeric and punctuation characters.

File upload
Apache Commons FileUpload and HTTPS facilitate the secure

uploading of client collateral.

Figure 4.56 – Solution security overview

This chapter details all aspects of security with regard to the ASP Billing4Rent prototype

case study, through a combination of code snippets, configuration details, diagrams,

tables and screen shots. In order to demonstrate how the security is incorporated into the

larger solution we provided an overview of the core functionality of the Billing4Rent

prototype case study.

Finally it examines the Billing4Rent security policy, which is composed of a combination

of guidelines with regard to general security, physical security, host security, network

security and data security

Chapter V Research Evaluation

127

Chapter V : Research Evaluation

5.1 Introduction

Chapter three detailed the results of a comprehensive literature and technology review of

Application Service Provision (ASP) with a particular emphasis on system security.

Chapter four introduced the Billing4Rent solution prototype. It examined the

implementation of system security in the Billing4Rent case study and illustrated the range

and types of technologies that encompass the security framework. This chapter draws on

the knowledge gained from both the literature and technology review and the

Billing4Rent case study to provide an objective comparison and analysis of the practical

implementation of system security in an ASP environment.

Tao [14] defines ASP security as a combination of both client data and server availability.

Linthicum [21] and Anderson [22] delve a little deeper, breaking down server availability

into hardware and software security breaches. In order to provide an in-depth evaluation

of security in an ASP environment, the author further subdivides security as follows:

 Software security, including application, middleware, platform, data and

network security.

 Hardware security, in particular, physical and network security.

 The security and the integrity of client data.

Although the Billing4Rent team incorporated a high level of security into the

development of the Billing4Rent solution, best practice dictates that security should be

continually monitored and improved on an ongoing basis [34], [43]. This chapter

examines the Billing4Rent case study with regard to each of the aforementioned software

components and the requirement for ongoing security enhancements.

Chapter V Research Evaluation

128

5.2 Security Evaluation Matrix

The literature and technology review identified two security standards relevant to the

examination of ASP security: the Open Standards Interconnect (OSI) security model

7498-2 and International Standards Organisation (ISO) 17799 security standard. OSI

7498-2 deals principally with solution security, whereas ISO 17799 is a generic

information security standard predominately concerned with information security within

an organisation. As this thesis is primarily concerned with system security requirements

and implementation in an ASP environment, the author elected to evaluate the

Billing4Rent case study based on the former.

The security evaluation matrix, depicted by Figure 5.1, lists the seven security services

identified by OSI 7498-2, based on generally agreed security objectives. It indicates the

method of protection required, i.e. software or hardware and the security technologies

used. It identifies the need to supplement hardware and software security through the

documentation and enforcement of a security policy. The Billing4Rent security policy is

composed of a number of guidelines for ensuring optimal security of the ASP solution. It

is an ever-changing document, constantly amended to cater for updates to the

organisation’s systems and procedures. Finally, the matrix provides an overall picture of

the security of the Billing4Rent case study by rating the level of security provided by the

solution as strong, medium, weak or not applicable. In the remaining sections of this

chapter, the author examines the software and hardware technologies used to secure the

Billing4Rent case study and the reasons pertaining to the security ratings outlined in the

security evaluation matrix.

Chapter V Research Evaluation

129

Security

Service
Method Technologies

Security

Policy

Security

Rating

Authentication Software

JAAS No Strong

Password validation No Strong

Access

Control

Software

JAAS Yes Strong

Java compiler and runtime No Strong

Strong passwords

Service packs

Patches

Anti-virus

Anti-spyware

Yes Strong

Hardware

Firewall Yes Strong

Physical security Yes Medium

Non -

Repudiation
Software Digital signature No

Not

applicable

Data integrity Software JSSE/ HTTPS No Strong

Confidentiality Software

JSSE/ HTTPS No Strong

Message digest No Strong

Data encryption Yes Weak

Assurance /

Availability
Software

Logging

Yes Medium

System monitoring Yes Medium

Notarisation /

Signature
Software PKI No Medium

Figure 5.1 – Security Evaluation matrix

Chapter V Research Evaluation

130

5.3 Software Security

In this context, software security is a generalised expression used to describe the security

of all software components that encompass an ASP solution. Software security

incorporates the operating system software, the development environment software, the

ASP application software, the middleware in a distributed environment, the database

management system and the network communication software. This section examines

the security of each of these discrete software applications in order to provide a complete

appraisal of the overall solution.

5.3.1 Platform Security

The term platform can be taken to mean either solution hardware or solution software or a

combination of both. The physical security section focuses primarily on hardware

security; therefore this section examines platform security purely from a software

perspective. Platform security, in a software context, can be used to denote both the

operating system and the development environment.

Howard and LeBlanc [32] highlight the fact that several of the well-publicised computer

security and virus problems relate to bugs in software, due to badly written software and

poorly configured solutions. The Billing4Rent project team address this issue in their

security policy. The security policy recommends that appropriate service packs, patches,

anti-virus and anti-spyware software are installed on all Billing4Rent machines and are

continually kept up to date by the system administrator. It proposes the adoption of

authentication and authorisation mechanisms and provides guidelines for the enforcement

of strong operating system passwords. Although the security policy is geared primarily

towards the commercial stage of the project, where feasible the Billing4Rent team

adhered to the recommendations therein throughout the implementation stage. By

following best practices with regard to host security, Billing4Rent minimises the security

risks attributed to poorly configured solutions.

Chapter V Research Evaluation

131

The Billing4Rent ASP solution was developed and deployed in a Java 2 Platform

Enterprise Edition (J2EE) environment. J2EE is composed of a set of standards for

developing and deploying enterprise Java applications [105]. J2EE provides a multi-tier

distributed application model, which can be divided into four main architectural tiers

(Figure 5.2):

 Client tier

 Presentation tier

 Business logic tier

 Enterprise Information Systems (EIS) tier

The client tier incorporates various client application e.g. browsers, applets or standalone

application clients. The presentation tier composes JSP and servlet web components,

deployed in web containers. Business logic components implement business rules and

access enterprise data. The Enterprise Information Systems (EIS) tier, commonly

referred to as the back-end, is composed of database management systems and other

legacy systems.

Chapter V Research Evaluation

132

Figure 5.2 – Multi-tier application model adapted from [105]

The J2EE platform provides a secure development and runtime environment for Java

applications. “Data type checking at compile-time and automatic memory management

leads to more robust code and reduces memory corruption and vulnerabilities. Bytecode

verification ensures code conforms to the JVM specification and prevents hostile code

from corrupting the runtime environment. Class loaders ensure that untrusted code

cannot interfere with other Java programs” [77]. In addition, the J2EE platform

provides mechanisms for enforcing security both declaratively and programmatically.

Declarative security is specified external to the application whereas programmatic

security is embedded in an application. Declarative security is achieved through the

specification of a security policy using the Extensible Markup Language (XML) within

J2EE deployment descriptors. J2EE provides a number of extensible Application

Programming Interfaces (APIs) to facilitate the development of secure communications,

cryptography, authentication and access control security features. The Billing4Rent

Chapter V Research Evaluation

133

solution was developed to make use of Java APIs where feasible, as they represent best

practice and it would be unlikely that they could be improved upon. The Billing4Rent

solution benefits from the code validation and memory management provided by the Java

platform. The solution further benefits from a high level of abstraction provided through

the use of declarative security, APIs and configuration files.

5.3.2 Application Security

Application security is concerned with restricting access to the ASP solution to

authorised personal and minimising the security risks associated with badly written

software. According to Morris and Thompson [31], an ASP solution is susceptible to

threats at the remote terminal, along the communications link and at the physical

machine. The ASP Billing4Rent solution prototype is composed of a number of JSPs,

Java Servlets, enterprise beans and libraries, deployed in a J2EE environment. This

section details a number of measures undertaken by the Billing4Rent team to safeguard

the Billing4Rent solution against unauthorised access via the remote client.

5.3.2.1 Client Authentication

Joyce [95] defines authentication as a means of verification of claimed identity at a point

in time. Access to the Billing4Rent solution, via a browser is restricted through the use

of the dynamic Java Authentication and Authorisation Service (JAAS) framework. JAAS

is composed of a set of APIs that facilitate the authentication and authorisation of users or

entities such as services. Although the JAAS framework can be used for both

authentication and authorisation, this section focuses exclusively on client authentication.

The JAAS API supplies a number of dynamically configured LoginModules, which

perform the authentication using several disparate security infrastructures. Alternatively,

it is possible to develop custom LoginModules that implement the LoginModule interface.

The Billing4Rent project team chose to implement a custom LoginModule, responsible

Chapter V Research Evaluation

134

for the authentication of login details against data stored in a tier 3 database. The primary

benefits of the implementation of authentication using JAAS are the ease of development

through the reuse of existing code libraries, the level of abstraction provided by the

dynamically configured LoginModules and the ability to use multiple independent

LoginModules simultaneously.

In order to gain access to the Billing4Rent solution, the client must first successfully log-

in to the web application. The Billing4Rent team designed the solution to use form-based

login to source a username and password from the user. The login details are

subsequently verified, by the LoginModule, against validation data stored in the tier 3

database. Despite well-known security weaknesses, username and password

combinations remain the most common means of authentication [55]. Passwords are

subject to security threats such as brute force attacks and network eavesdropping [31],

[55], [58]. In addition, passwords written down, stored online as cleartext or divulged to

unauthorised individuals may result in compromised security [52]. In an attempt to

minimise the aforementioned security risks, Billing4Rent adhered to best practices with

regard to the creation of passwords [96], [97], [98]. The Billing4Rent solution enforces

strict password selection guidelines. For example, all Billing4Rent passwords must

contain more than eight characters and must be composed of a combination of

alphanumeric characters, punctuation symbols and upper and lower case characters. In

order to prevent attackers from checking several passwords, Pinkas and Sander [55]

recommend that accounts should be locked after a predefined number of unsuccessful

login attempts. As an additional security measure, the Billing4Rent solution has been

designed to disable an account after three unsuccessful login attempts. The Billing4Rent

administrator is responsible for re-enabling the account at the client’s request. As such

the Billing4Rent solution provides adequate protection against unauthorised access in the

form of brute force attacks. A brute force attack is an attempt by a user or a program to

try multiple combinations of characters, words or other commonly used strings to gain

unauthorised access to a system. The author would like to highlight that the Billing4Rent

solution uses the Hyper Text Transport Protocol over Secure Sockets Layer (HTTPS)

Chapter V Research Evaluation

135

protocol to protect the privacy of login data transferred over the network. The protection

of data security and integrity shall be reviewed in a section dedicated to network security.

5.3.2.2 Server Authentication

In an ASP environment, authentication is intrinsically twofold and as such includes the

authentication of the application service provider in addition to user authentication as

outlined above. Secure Sockets Layer (SSL) is a network protocol, which is used to

ensure secure communication over the Internet. SSL provides authentication of the

server and, where required, the client. HTTP is a request/response protocol used to

retrieve web resources from a server and render them in a web browser. HTTPS is a

secure version of HTTP where requests and responses are encrypted using SSL prior to

being sent over the network. An X.509 certificate is used in order to facilitate server

authentication. A server certificate contains information about the server that allows a

client to identify the server prior to sharing sensitive information. The Billing4Rent

project team generated a public/private key pair and corresponding X.509 certificate

using Sun Microsystems’ Keytool, a key and certificate management command-line

utility. This self-signed certificate is used to verify the identity of the Billing4Rent

organisation. Although self-authentication is acceptable as a means of proof of identity,

in a prototype environment, the author recommends that this certificate should be

replaced with a digital certificate sourced from a trusted third party, such as a certification

authority, prior to deploying the service in a production environment. A digital certificate

generated by a certificate authority it is deemed more secure than self-signed certificates,

as certificate authorities confirm the identity of the applicant prior to issuing the

certificate [106].

Chapter V Research Evaluation

136

5.3.2.3 Authorisation

Once the user has logged into the Billing4Rent solution, access to resources are managed

through the adoption of a stringent authorisation and access control policy. Stergiou [99]

defines access control as the restriction of admission to resources to the users holding the

appropriate privileges. Access to sensitive data displayed on Billing4Rent solution web

pages is restricted through the use of the JAAS framework. JAAS enables the

administrator to grant access rights based on who is running the code, in addition to what

code is running [80], [81]. After the Billing4Rent user has been authenticated, a Subject

object is instantiated and populated with one or more principals, where each principal

represents an identity for that user. The Java security manager uses a security policy to

grant or deny principals access to privileged resources. The Billing4Rent project team

chose to implement a custom URLPermission class, which implements the Permission

interface. The URLPermission class is used in conjunction with the security policy to

permit or deny access to URL resources. Again, the JAAS framework facilitates ease of

development through the reuse of existing libraries and provides a high level of

abstraction through the use of a security policy. Access policies are declared in a single

file that can be easily updated by the system administrator, without the need for code

changes.

5.3.2.4 Errors in the Code or Application Logic

Software bugs such as errors in the code or application logic leave the computer system

vulnerable to external attacks [32], [33]. McGrath [34] furthers this hypothesis, stating

that “vulnerabilities typically fall into two categories: bugs at the implementation level

and flaws at the design level”. Ideally, applications should be rigorously tested to

minimise the associated security risks. Ravi et al [35] emphasise the fact that best

practice recommends considering security throughout the entire Software Design Life

Cycle (SDLC). Potter and McGraw [33] in turn reveal the benefits that can be achieved

by identifying security risks in the system and creating tests driven by those risks.

Chapter V Research Evaluation

137

Unfortunately, there is no such thing as complete security in a usable system and

consequently it is important to concentrate on reducing risk as opposed to wasting

resources trying to eliminate it completely [40]. The Billing4Rent solution was

developed using an iterative waterfall model, with security being a foremost

consideration throughout the project life-cycle. The Billing4Rent team identified

potential security risks from the offset, incorporated security into both the design and the

development phases and created a number of corresponding test cases, with a view to at

best eliminating or at worst minimising the risk associated with errors in the code or

application logic. The author would like to highlight that security is also of utmost

importance in the integration phase and throughout the entire life-time of the solution.

5.3.2.5 Logging and System Monitoring

Best practice dictates that security should be continually monitored and improved on an

ongoing basis [34], [43]. Software logs help determine the extent of the damage caused

by security breaches and assist in meeting the aforementioned objective. In addition,

logging provides the system administrator with the data required to proactively monitor

the system for security anomalies [41]. System monitoring provides a successful means

of highlighting unforeseen threats in a timely manner and thus limits their impact [43].

The Billing4Rent solution has been designed to generate audit, error and security logs.

The administration tool provides Billing4Rent administrators with the ability to access

logs, which are stored in audit, error and security tables in an Oracle database. Although

the current Billing4Rent system monitoring process is quite effective, the author believes

there is scope here for improvement through automation. The author recommends further

research into the feasibility of the Billing4Rent solution automatically generating a

notification, such as an email, when it uncovers a suspected security breach.

Chapter V Research Evaluation

138

5.3.2.6 Additional Recommendations

As discussed previously, the Billing4Rent solution uses the dynamic JAAS framework to

handle both authentication and authorisation. JAAS uses the login configuration file to

retrieve the name of a class which implements the LoginModule interface, the associated

Java package and optional configuration options. The debug flag, Oracle database URL,

Oracle driver, Oracle username and Oracle password properties are all defined, in the

Billing4Rent login configuration file, as name-value-pairs. As both the Oracle user name

and password are stored as cleartext in an unencrypted configuration file, the database is

susceptible to attack should an unauthorised individual gain access to the host and

subsequently, the configuration file. The author highlights the need for further

development to enhance the overall security of the solution. All sensitive configuration

options should be stored as encrypted data in the login configuration file and

subsequently decrypted by the associated LoginModule.

5.3.3 Middleware Security

Middleware refers to the software layer between the operating system, including the basic

communication protocols, and the distributed applications that interact via the network.

This software infrastructure facilitates the interaction among distributed software

modules [60]. In general, ASP refers to the supply of online software functionality to

multiple clients on a subscription or rental basis, remotely via the Internet or a private

network. However, a thin client could indeed be used instead of or in combination with,

a web browser. Therefore, for completeness, the author elected to perform a review of

middleware and corresponding technologies. The ASP Billing4Rent solution prototype

was developed using web technologies and was deployed entirely in a J2EE environment.

As such the solution benefited from the middleware provided by the web server.

Chapter V Research Evaluation

139

5.3.4 Data Security

Bertino and Sandhu [88] emphasise the fact that damage and misuse of data held in

database systems could result in disastrous consequences. The Billing4Rent solution

prototype interacts with an Oracle 9i Relational Database Management System

(RDBMS). Although Oracle 9i provides a high level of out-of-the-box security, the

author believes it would be prudent to follow Oracle’s security checklist [89] with regard

to the configuration of Oracle9i, in order to maximise its security features.

As an additional means of security, the Billing4Rent solution has been designed to

encrypt solution passwords, using a one-way hash function, prior to storing the password

in the Oracle database. Subsequently, when the user attempts to login to Billing4Rent,

the password they enter is encrypted, using the aforementioned hash function and

compared against the password stored in the database for the specified user. In [90]

Oracle suggest that encryption technologies could be used to obtain an additional

measure of security, by selectively encrypting sensitive data prior to storing it in a

database. The author suggests that the use of encryption to enhance the security of

sensitive data warrants further research, especially with regard to the anticipated

performance overhead.

5.3.5 Network Security

The Billing4Rent solution was deployed on a J2EE server, which uses a set of Java

packages known as Java Secure Socket Extension (JSSE), to enable secure Internet

communication. Best practice dictates that sensitive data transmitted over a network

should be encrypted to ensure that data cannot be interpreted, should it be intercepted by

a third party [46]. The Billing4Rent solution uses the HTTPS protocol for both login to

and navigation of the Billign4Rent web application once the user has been authenticated.

HTTPS is a secure version of the HTTP where requests and responses are encrypted

using SSL or TLS prior to being sent over the network. SSL is the de-facto standard

Chapter V Research Evaluation

140

[49], [47], [50], [51] used to secure communication over the Internet. As discussed

earlier, the Billing4Rent project team used Sun Microsystems’ Keytool utility to generate

a public/private key-pair and associated X.509 certificate. The public/private key-pair is

used to initiate secure communication between a server and a browser. Subsequent

transmissions are encrypted with a random symmetric key generated by the browser. As

the Billing4Rent prototype was also designed to ensure optimal performance, access to

general information that does not warrant security is permitted via HTTP. The section

dedicated to software security highlighted the fact that HTTPS also facilitates the

authentication of the server, and where required, the client, through the use of digital

certificates.

5.4 Hardware Security

As discussed previously, the term platform is often attributed to system hardware, system

software or a combination of both. Since this thesis has already examined platform

security from a software context, this section focuses on the evaluation of the

Billing4Rent case study from a hardware security perspective. Wang [26] defines

hardware security as the physical protection of devices through the provision of a secure

environment. This section examines the physical security of computer systems and

communications equipment and the use of networking devices to protect all machines on

the network.

5.4.1 Physical Security

Physical security focuses on the security of all hardware components that encompass the

ASP solution. Bhagyavati and Hicks [25] define physical security as the locking up of

assets such as networking infrastructure, computer systems and data storage, in order to

provide protection from unauthorised monitoring, theft, corruption, and natural disasters.

In the literature and technology review, the author identified four distinct hardware

Chapter V Research Evaluation

141

threats. Firstly, ASP solution hardware and communications equipment could be

damaged or destroyed by natural disasters, electrical surges, fire or water. Secondly,

unauthorised access to the facility could result in ASP solution hardware being damaged,

tampered with or stolen. Thirdly, the ASP solution hardware could be damaged,

tampered with or stolen by disgruntled or former employees. Finally, authorised

personnel could inadvertently damage ASP solution hardware.

The Billing4Rent security policy provides guidelines with regard to the physical

protection of hardware devices and network media against the aforementioned threats,

through the provision of a secure environment. The author recommends that the housing

of hardware and communications equipment should be outsourced to a third party. The

major advantage of adopting an outsourcing strategy is that organisations are free to

concentrate on their core business [27], [28]. In addition, Billing4Rent can expect to

benefit from economies of scale and a high degree of security, as data centers specialise

in both the security and the availability of hardware and communications equipment. As

outlined in the solution security section 3.3.2, although the security policy is more

relevant to the commercial stage of the project, where feasible the Billing4Rent team

adhered to the recommendations therein throughout the implementation stage. As such,

the Billing4Rent hardware and communications equipment was stored, throughout the

implementation stage of the project, in a lockable room within the main monitored,

alarmed and secured campus building. Where feasible, the Billing4Rent ASP

infrastructure was further secured through the use of security cables, padlocks and other

such devices.

5.4.2 Network Security

The section dedicated to solution security examined network security from a software

perspective. This section deals exclusively with the use of networking devices to protect

network resources. A firewall is undoubtedly the most important security device on the

organisation’s network, as it creates a secure barrier between the organisation’s internal

Chapter V Research Evaluation

142

network and the outside world. A firewall can be composed of software or hardware, or a

combination of both, configured to control access between the Internet and hosts

connected to a private network [49], [51]. A firewall is responsible for filtering incoming

and outgoing IP packets, depending on the rules configured by the administrator. These

rules can be configured based on different network protocols, the network address of the

destination or source, the port number, IP packet headers etc. [107]. Although access to

the Internet is crucial for the ASP model, it can also constitute as a security threat to the

organisation. The optimal solution is to use one or more firewalls to filter all traffic to

and from the organisation.

Based on best practice outlined in [108], the author recommends the use of a

demilitarised zone (DMZ) to protect devices on the Billing4Rent network. A DMZ is

defined as a network that sits between the trusted internal network and the untrusted

external network. All servers requiring external access are placed in the DMZ. External

access to HTTP, HTTPS, FTP, FTPS and SMTP services on the DMZ network should be

permitted through the outer firewall. Access to machines on the internal network should

be permitted solely from machines in the DMZ through the inner firewall. Sun

Microsystems, Microsoft and IBM all propose two-tier DMZ network architectures.

Figure 5.3 adapted from [105] provides a high-level overview of the two-tier DMZ

network architecture.

Chapter V Research Evaluation

143

Figure 5.3 – Two-tier DMZ design adapted from [105]

Although a two-tier architecture provides adequate protection of the internal network, a

three-tier architecture would provide an additional layer of abstraction and could thus be

deemed more secure. META Group [109], which was acquired by Gartner in April 2005,

outlines best practices pertaining to the design of secure network architectures. The

three-tier architecture has been a popular choice for many organisations as it affords the

opportunity to apply different security filters and services between each tier of common

three-tier web applications, thereby facilitating a defense-in-depth strategy (Figure 5.4).

Figure 5.4 – Three-tier DMZ design adapted from [109]

META group [109] highlight the fact that although the three-tier DMZ design is still

adequate, it is not ideally suited to today’s objectives, such as minimising the amount of

exposed infrastructure and economically accommodating access by both internal and

external users to the same set of applications. Meta Group [109] expects to see many

organisations migrate to the two-tier proxy-enabled design depicted in Figure 5.5. This

design provides a greater level of security than both the two-tier DMZ and the three-tier

DMZ designs as both web servers and application servers are no longer visible, as they

reside on the internal network.

Chapter V Research Evaluation

144

Figure 5.5 – Two-tier, proxy-enabled DMZ design adapted from [109]

As an additional measure of security, many firewalls incorporate a Virtual Private

Network (VPN) server. VPNs provide secure remote access to network resources

through the encryption of traffic between the firewall and remote users.

5.5 Client Data Security

Data security is intrinsically twofold: it includes the privacy protection and the soundness

of the stored information [36]. Tao [14] outlines the need for ASPs to establish stringent

procedures to ensure the security and integrity of customer data while it is under their

care. As illustrated in the literature and technology review, there is a distinct overlap

between both ASP physical and solution security, and the security and integrity of

customer data. In addition, ASPs need to be aware of their legal obligations with regard

to the protection of client data. In Europe, this legislation comes in the form of the

Privacy and Electronic Communications Directive 2002/58/EC and the Data Protection

Directive 95/46/EC. These regulations outline conditions for processing personal data

and provide legislation to permit individuals and organisations to inspect personal data

and to ensure this data is valid. The author suggests that by following best practices with

Chapter V Research Evaluation

145

regard to the security of both hardware and software, the organisation ensures the security

and integrity of data transmitted over the Internet. The Information Sensitivity Policy in

turn provides guidelines with regard to what information can be disclosed to non-

employees, as well as the relative sensitivity of information that should not be disclosed

outside of the Billing4Rent organisation without proper authorisation. Although the

Information Sensitivity Policy details the protection required for information at varying

sensitivity levels, the author suggests that the Billing4Rent team should relate the levels

of sensitivity specifically to the client data.

Chapter V Research Evaluation

146

5.6 Chapter Summary

In this chapter the author uses the knowledge gained from both the literature and

technology review and the Billing4Rent case study to provide an in-depth evaluation of

the practical implementation of system security in an ASP environment. The author

evaluated the security of the Billing4Rent case study from a hardware, software and data

perspective, across all tiers of the service architecture. The author paid particular

attention to best practices with regard to the consideration of security throughout the

entire Software Design Life Cycle (SDLC) and the need to monitor and improve security

throughout the lifetime of the solution.

The author devised a security evaluation matrix based on the Open Standards

Interconnect (OSI) security model 7498-2, which in turn is based on generally agreed

security objectives. It provided a detailed picture of the security of the Billing4Rent case

study and enabled the reader see at a glance the level of security provided by the solution.

Finally, the author examined the security and integrity of client data based on legal

obligations with regard to the protection of data outlined in the Privacy and Electronic

Communications Directive 2002/58/EC and the Data Protection Directive 95/46/EC.

Chapter VI Conclusion

147

Chapter VI : Conclusion

This thesis focused on ‘An Investigation into System Security Requirements and

Implementation in an Application Service Provision (ASP) Environment’. The research

conducted yielded a comprehensive framework of best practice with respect to system

security within the ASP domain.

The literature and technology review identified security as one of the key factors

influencing the uptake of the ASP model. It highlighted the fact that fears of inadequate

security and privacy have prevented many firms from fully investigating and integrating

the ASP business model. In the case study, the author examined system security in detail,

through the research and development of all aspects of security with regard to the ASP

model. In the evaluation chapter, the author used the knowledge gained from both the

literature and technology review and the case study to provide an in-depth evaluation of

the practical implementation of system security in an ASP environment. This chapter

concludes the thesis with a summary of the research outputs, the conclusions drawn and

provides a list of recommendations for future work.

6.1 Research Outputs

The research results can be divided into a number of distinct outputs:

1) The ASP solution prototype, a sample implementation of security in an ASP

environment, based on proven infrastructure and best practices with respect to

security.

2) A number of security libraries, designed to facilitate both change and reuse,

achieved through the development of loosely-coupled components and the

implementation of a high degree of abstraction.

Chapter VI Conclusion

148

3) A security policy, which outlines best practice with regard to general security,

physical security, host security, network security and data security in an ASP

environment.

4) A security evaluation matrix, which provides a high-level view of system security

requirements in an ASP environment. It is envisaged that the matrix could be

used to evaluate not only the security of ASP applications, but the security of any

n-tier application.

6.2 Conclusions Drawn

The author concludes that security considerations in an ASP solution are the same as the

security considerations of any other n-tier application such as banking or e-business.

1) Perceptions with regard to fears of inadequate security of ASP solutions and

solution data are misguided and unfounded.

2) The technologies and mechanisms used to secure an ASP solution are in fact the

tried and tested security technologies and mechanisms used to secure other n-tier

applications.

3) ASP solution hardware and communications equipment, like other n-tier

applications, can be outsourced to a third party such as a data center, as data

centers specialise in both the security and the availability of such equipment.

4) Access to the ASP solution can be restricted through the adoption of strong

authentication and stringent access control policies. Applications should be

rigorously tested to minimise security risks attributed to badly written and

configured solutions.

Chapter VI Conclusion

149

5) Standard HTTP security protocols should be used to secure any sensitive data

transmitted from an ASP client to the hosted application. In the context of ASP,

sensitive data is semantically broader than the conventional use of the term.

6.3 Recommendations

The author provides the following recommendations with respect to the research and

development of system security in an ASP environment:

1) ASP solutions should be developed and deployed on tried, tested and trusted

infrastructure. Proven infrastructure performance and security improves the

overall likelihood of a successful solution deployment.

2) Existing Application Programming Interfaces (APIs) should be used where

possible. Java provides a number of APIs, which facilitate the development of

secure communications, cryptography, authentication and access control security

features.

3) Security best practices should be adhered to, where feasible. Best practices

represent techniques or methodologies, based on experience and research, that

have resulted in optimal solution security practices.

4) Careful consideration should be given to how customer data is secured in an ASP

environment. Such consideration should encompass how customer information is

manifested in the middleware and how such data is secured in tier three database

applications.

5) An effective security policy should be designed, implemented and maintained.

The security policy should result in the protection of the organisation’s assets

from both external and internal threats, without impeding the organisation from

achieving its objectives.

Chapter VI Conclusion

150

6.4 Future Research Potential

The author identifies significant further research potential, with regard to ASP system

security:

1) The examination of the feasibility of using digital certificates, in an ASP

environment, for client authentication, in addition to server authentication.

Digital certificates could be used in combination with other authentication

mechanisms to verify that the client is in fact who they claim to be. Special

consideration should be given to the difficulty managing client certificates.

2) An investigation into the necessity of using digital signatures, in an ASP

environment, to confirm the claimed identity of the originator and guarantee the

validity of messages. Digital signatures enable security, and more importantly,

accountability for electronic transactions.

3) An exploration into the use of encryption techniques to enhance the security of

sensitive data stored in file systems and databases. Particular consideration must

be given to what data should be encoded and the expected performance overhead.

Database lookups are designed to facilitate searching through millions of rows for

specific items in seconds. A database cannot afford to encrypt and decrypt each

piece of data it must search.

In summary the author concludes that by following best practices with respect to security

an ASP application can provide the same level of security one would expect from any

other application. ASPs may in-fact provide greater levels of security than that which

could be provided by a customer organisation.

Chapter VI Conclusion

151

152

References

[1] Exploratory research

http://en.wikipedia.org/wiki/Exploratory_research

[2] I.M. Crawford

Marketing Research and Information Systems

http://www.fao.org/docrep/W3241E/w3241e00.htm - Contents

[3] Agile software development

http://www.1stcustomsoftware.com/Agile_software_development-44.html

[4] Iterative and Incremental Development

http://www.liberty.edu/informationservices/development/index.cfm?pid=6355

[5] Winston W. Royce

Managing the development of large software systems: concepts and techniques

Proceedings of the 9th International Conference on Software Engineering

[6] Manifesto for Agile Software Development

http://agilemanifesto.org/

[7] Bhavini Desai, Vishanth Weerakkody, Wendy Currie, D. E. Sofiane Tebboune,

Naureen Khan

Market Entry Strategies of Application Service Providers: Identify Strategic

Differentiation

Proceedings of the 36th Annual Hawaii International Conference on Systems Sciences -

2003

[8] Nozar Daylami, Terry Ryan, Lorne Olfman, Conrad Shayo

Determinants of Application Service Provider (ASP) Adoption as an Innovation

Proceedings of the 38th Annual Hawaii International Conference on Systems Sciences -

2005

[9] Anjana Susarla, Anitesh Barua, and. Andrew B. Whinston

Making the Most Out of an ASP Relationship

IEEE IT Professional - Volume 3, Issue 6, Pages 63-67, November-December 2001

[10] Kenneth R. Walsh

Analysing the application ASP concept: technologies, economies, and strategies

Communications of the ACM – Volume 46, Issue 8, August 2003

153

[11] A. Bernstein

The State of ASPs

Robert Frances Group - 1999

http://www.cio.com/analyst/122799_rfgonline.html

[12] Thomas Kern and Jeroen Kreijger

An Exploration of the Application Service Provision Outsourcing Option

Proceedings of the 34th Annual Hawaii International Conference on Systems Sciences -

2001

[13] Anjana Susarla, Anitesh Barua, and Andrew B. Whinston

Understanding the Service Component of Application Service Provision: An Empirical

Analysis of Satisfaction with ASP Services

MIS Quarterly – Volume 27, Issue 1, pages 91–123, March 2003

[14] Lixin Tao

Shifting Paradigms with the Application Service Provider Model

IEEE Computer – Volume 34, Issue 10, pages 32-39, October 2001

[15] Greg Goth

The Next Gold Rush: Application Service Providers Stake Their Claims in a Red-Hot

Market

IEEE Software – Volume 17, Issue 2, Pages 96-99, March/April 2000

[16] Roland Klueber

ASP Strategies and Solutions for eProcurement Process Offered by an eMarket

Proceedings of the 35th Annual Hawaii International Conference on Systems Sciences -

2002

[17] Dr Philip Seltsikas and Prof. Wendy L. Currie

Evaluating The Application Service Provider (ASP) Business Model: The Challenge of

Integration.

Proceedings of the 35th Annual Hawaii International Conference on Systems Sciences -

2002

[18] A. Konary - 2004,

“Presentation to the ITAA”, IDC Analyst Presentation to the ITAA - February 12, 2004,

http://www.idc.com/

[19] Graham Winch, Wendy L. Currie and Philip Joyce

Making the ASP model work: using SD to explore trade-offs in IT service product design

22nd International System Dynamics Conference, Keble College, Oxford - July 2004

[20] B. Desai and W. Currie

Application Service Providers: A model in Evolution

Proceedings of the 5th international conference on Electronic commerce - 2003

154

[21] David S. Linthicum

To ASP or Not to ASP? – 2002

http://www.softwaremag.com/

[22] Troy E. Anderson

Management Guidelines for PC Security

ACM SIGICE Bulletin - Volume 20, Issue 1, Pages 7-14, July 1994

[23] S. Weingart and G. Double

An Evaluation System for Physical Security of Computing Systems

Sixth AnnualComputer Security Applications Conference -1990

[24] A. Mader and S. Srinivasan

Curriculum development related to information security policies and procedures

Proceedings of the 2nd annual conference on Information security curriculum

development InfoSecCD - 2005

[25] Bhagyavati and Glenn Hicks

A basic security plan for a generic organisation

Journal of Computing Sciences in Colleges – Volume 19, Issue 1, October 2003

[26] Andy Ju An Wang

Security Testing in Software Engineering Courses

34th ASEE/IEEE Frontiers in Education Conference

[27] Kate Gerwig

Apps on Tap: Outsourcing hits the web

Source netWorker archive –Volume 3, Issue 3, September 1999

[28] Chris Lonsdale and Andrew Cox

The historical development of outsourcing: the latest fad?

Industrial Management and data systems, PART 8/9, pages 444-450, 2000

[29] Adrian Baldwin, Simon Shiu and Marco Casassa Mont

Trust Services: A Framework for Service-Based Solutions

26th Annual International Computer Software and Applications Conference

[30] Leonard H. Fine

Computer Security – A Handbook for Management

Irish Management Institute Dublin – 1983

[31] Robert Morris and Ken Thompson

Password Security: A Case History

Communications of the ACM – Volume 22, Issue 11, Pages 594–597, November 1979

155

[32] Michael Howard and David LeBlanc

Writing Secure Code

Microsoft Press – 2001

[33] Bruce Potter and Gary McGraw

Software security testing

IEEE Security & Privacy Magazine - Volume 2, Issue 5, Pages 81-85, September-

October 2004

[34] G. McGraw

Software security

IEEE Security & Privacy Magazine – Volume 2, Issue 2, Pages 80-83, Marrch-April

2004

[35] Paul Kocher, Ruby Lee, Gary McGraw, Anand Raghunathan and Srivaths Ravi

Security as a new dimension in embedded system design.

Proceedings of the 41st annual conference on Design automation, June 2004

[36] S. Miranda

Aspects of data security in general-purpose data base management systems

Proceedings of the 1980 IEEE Symposium on Security and Privacy – April 1980.

[37] Commission launches infringement proceedings against nine Member States for not

adopting new privacy rules for digital networks and services.

http://europa.eu.int/rapid/pressReleasesAction.do?reference=IP/03/1663&format=HTML

&aged=1&language=EN&guiLanguage=en - file.tmp_Ref_1, 18th May 2005

[38] DIRECTIVE 95/46/EC OF THE EUROPEAN PARLIAMENT AND OF THE

COUNCIL

http://europa.eu.int/smartapi/cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&lg=E

N&numdoc=31995L0046&model=guichett, 18th May 2005

[39] G. Spafford

Internet Security Know the Risk and Control it!

Director, Computer Operations, Audit, and Security Technology (COAST) Project,

Purdue University

[40] Frederick M. Avolio

Best Practices in Network Security

CMP Media, March 20, 2000.

http://www.dushkin.com/text-data/articles/27509/body.pdf

156

[41] The Internet Engineering Task Force

Site Security Handbook

http://www.ietf.org/rfc/rfc2196.txt?Number=2196

[42] Geoffrey H. Wold and Robert F. Shriver

“RISK ANALYSIS TECHNIQUES - The risk analysis process provides the foundation

for the entire recovery planning effort”, Disaster Recovery World© 1997

http://www.drj.com/new2dr/w3_030.htm, 18th May 2005

[43] Ravi Sandhu and Pierangela Samarati

Authentication, Access Control, and Audit

ACM Computing Surveys, Vol. 28, No. 1, March 1996

[44] Jon Toigo

Disaster Recovery Planning – Preparing for the unthinkable – 3rd Edition - 2003

Prentice Hall PTR

[45] Anjana Susarla, Anitesh Barua and Andrew B. Whinston

Myths about outsourcing to application service providers

IEEE IT Professional - Volume 3 Issue 3, Pages 32-3, May-June 2001

[46] Gerald J. Popek, Charles S. Kline

Encryption and Secure Computer Networks

ACM Computing Surveys (CSUR) - December 1979 - Volume 11 Issue 4

[47] Vijay Ahuja

Network & Internet Security - 1996

Academic Press Inc.

[48] William Stallings

Network Security Essentials, Applications and Standards – Second Edition – 2003

Prentice Hall PTR, by Pearson Education Inc.

[49] Andrew S. Tanenbaum

Computer Networks – 4th Edition – 2003

Prentice Hall PTR, by Pearson Education Inc.

[50] Simson Garfinkel with Gene Spafford

Web Security, Privacy, and Commerce – 2nd Edition – 2002

O’Reilly and Associates Inc.

[51] William Stallings

Cryptography and Network Security, Principles and Practices – 2003

Prentice Hall PTR, by Pearson Education Inc.

157

[52] Roger J. Sutton

Secure Communications – Applications and Management – 2002

John Wiley & Sons, Ltd.

[53] Ray Hunt

PKI and Digital Certification Infrastructure

Ninth IEEE International Conference on Networks (ICON'01) - October 2001

[54] Albert Levi, M. Ufuk Caglayan, Cetin K. Koc

Use of nested certificates for efficient, dynamic, and trust preserving public key

infrastructure

ACM Transactions on Information and System Security (TISSEC) - Volume 7, Issue 1,

February 2004

[55] Benny Pinkas and Tomas Sander

Securing Passwords Against Dictionary Attacks

Proceedings of the 9th ACM conference on Computer and communications security,

November 2002

[56] Wesley Chou

Inside SSL: The Secure Sockets Layer Protocol

IEEE IT Professional – Volume 4, Issue 4, Pages 47-52, July/August 2002

[57] Southern Methodist University (SMU)

School of Engineering

http://engr.smu.edu/~nair/courses/7349/ssl.ppt, 18th May 2005

[58] Liang Fang, Samuel Meder, Olivier Chevassut, Frank Siebenlist

Secure password-based authenticated key exchange for web services

Proceedings of the 2004 workshop on Secure web service SWS, October 2004

[59] Avishai Wool

A quantitative study of firewall configuration errors

IEEE Computer - Volume37, Issue 6, Pages 62-67, June 2004

[60] Kurt Geihs

Middleware Challenges Ahead

IEEE Computer - Volume34, Issue 6, Pages 24-31, June 2001

[61] Simon N. Foley, Thomas B. Quillinan, Maeve O’Connor, Barry P. Mulcahy, and

John P. Morrison

A Framework for Heterogeneous Middleware Security

Proceedings of the 18th International Parallel and Distributed Processing Symposium -

2004

158

[62] A. Alireza , U. Lang ;, M. Padelis , R. Schreiner , and M. Schumacher

The Challenges of CORBA Security

Darmstadt University of Technology

[63] Zhonghua Yang and Keith Duddy

CORBA: A Platform for Distributed Object Computing

ACM SIGOPS Operating Systems Review - Volume 30, Issue 2 - April 1996

[64] Object Management Group

History of Corba

http://www.omg.org/gettingstarted/history_of_corba.htm

[65] Dionisis X. Adamopoulos, George Pavlou, Constantine A. Papandreou and

Emmanuel Manolessos

Distributed Object Platforms in Telecommunications: A Comparison Between DCOM

and CORBA

Managing the Network

[66] Chris Cleeland and Rob Martin

CORBA Security: An Overview

Object Computing Inc - 2002

http://www.omg.org/technology/documents/formal/omg_security.htm - Security_Service

[67] August Mayer

VI. Overview: CORBA security

Bowling Green State University - Summer 2001

http://student.cosy.sbg.ac.at/~amayer/projects/corbasec/sec_overview.html

[68] Chris Exton, Damien Watkins and Dean Thompson

Comparisons between CORBA IDL COM/DCOM MIDL: Interfaces for Distributed

Computing

Monash University, Australia – 1997

[69] Alexander Davis and Du Zhang

A comparative study of DCOM and SOAP

Proceedings of the IEEE Fourth International Symposium on Multimedia Software

Engineering - 2002

[70] Juval Lowy

Web Services Hurdle the Firewall

.Net Magazine, Volume 1, No. 1 - Fall/Winter 2001

http://www.ftponline.com/wss/2001_12/magazine/features/jlowy_2/

159

[71] Don Box

A Young Person's Guide to The Simple Object Access Protocol: SOAP Increases

Interoperability Across Platforms and Languages

MSDN Magazine - March 2000

http://msdn.microsoft.com/msdnmag/issues/0300/soap/default.aspx

[72] OASIS Web Services Security (WSS) technical committee.

Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

http://www.oasis-open.org/committees/documents.php?wg_abbrev=wss

[73] Jim Waldo

Remote procedure calls and Java Remote Method Invocation

IEEE IT Concurrency - Volume 6 Issue 3, Pages 5-7, July-September 1998

[74] Ann Wollrath, Jim Waldo and Roger Riggs

Java-centric distributed computing

IEEE Micro - Volume 17, Issue 3, Pages 44 – 53, May/Jun 1997

[75] Sun Microsystems

Java RMI over IIOP

http://java.sun.com/products/rmi-iiop/

[76] Arnold Buss and Leroy Jackson

Distributed simulation modeling: a comparison of HLA, CORBA, and RMI

Proceedings of the 1998 Winter Simulation Conference

[77] Sun Microsystems

Security and the Java Platform

http://java.sun.com/security/

[78] Sun Microsystems

Java Security Architecture

http://java.sun.com/j2se/1.5.0/docs/guide/security/spec/security-spec.doc1.html - 21150

[79] Sun Microsystems

Java Authentication and Authorisation Service (JAAS) Overview

http://java.sun.com/products/jaas/overview.html

[80] Tarak Modi

Jazz Up Java Security with JAAS

http://www.fawcette.com/archives/upload/free/Features/Javapro/2001/09sep01/tm0109/t

m0109-1.asp

160

[81] C. Lai, L.Gong, L.Koved, A. Nadalin and R. Schemers

User authentication and authorisation in the Java
TM

 platform

IEEE Computer Security Applications Conference, 1999

[82] Sun Microsystems

JAAS Authorisation

http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/AcnAndAzn.html

[83] Sun Microsystems

Java Cryptography Extension (JCE) Reference Guide

http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html

[84] Russell Meyers and Charles Frank

Implementing Your Own Cryptographic Provider Using the Java Cryptography

Extension

Northern Kentucky University

[85] Sun Microsystems

Java Secure Socket Extension (JSSE) Reference Guide

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

[86] Raghavan Srinivas

Java security evolution and concepts

http://www.javaworld.com/javaworld/jw-05-2001/jw-0525-security-p3.html

[87] Scott Nevins

Database security: protecting sensitive and critical information

CEO of Protegrity

[88] Elisa Bertino and Ravi Sandhu

Database security - concepts, approaches, and challenges

IEEE Transactions on Dependable and Secure Computing - Volume 2, Issue 1, Pages 2 –

19, January-March 2005

[89] Rajiv Sinha

A Security Checklist for Oracle9i

An Oracle white paper - March 2001

[90] Oracle Corporation

Oracle 9i Advanced Security Release 2 - Data Sheet

http://www.oracle.com/technology/products/oracle9i/datasheets/advanced_security/aso_r

el2.html

161

[91] Oracle Corporation

Oracle9i™ LogMiner™

Database Analysis Tool - Features Overview - January 2002

[92] Oracle Corporation

Oracle9i Fine-Grained Auditing

http://www.oracle.com/technology/products/oracle9i/daily/oct03.html

[93] Jonathan D. Moffett and John A. Clark

An Introduction to Security in Distributed Systems

High Integrity Systems Journal - 1(1): pages 83-92, 1994

[94] Jonathan D. Moffett

Security & Distributed Systems

Department of Computers, University of York, England

[95] Matthew Joyce

IC3-1 Network Seccurity

University of Bergen, NORWAY

[96] Jianxin Jeff Yan

A note on proactive password checking

ACM - Proceedings of the 2001 workshop on New security paradigms

[97] J.Yan, A. Blackwell, R. Anderson and A. Grant,

Password memorability and security: empirical results

IEEE Security & Privacy Magazine - Volume 2, Issue 5, Pages 25-31, September-

October 2004

[98] Jianxin Yan, Alan Blackwell, Ross Anderson and Alasdair Grant

The Memorability and Security of Passwords Some Empirical Results

Cambridge University Computer Laboratory

http://download.lawr.ucdavis.edu/pub/CambridgePWStudy.pdf

[99] Theodore Stergiou, Mark S. Leeson, Roger J. Green:

An alternative architectural framework to the OSI security model

Elsevier - Computers & Security - 23, 137e153, 2004

[100] Newstaff, Inc.

Information Security References, ISO 17799

http://newstaff.info/criteria/iso17799/index.html

[101] ISO 17799 Information and Resource Portal

ISO 17799

http://17799.denialinfo.com/

162

[102] Biju Mukund

ISO 17799 Information and Resource Portal

http://17799.denialinfo.com/biju.htm

[103] John Musser and Paul Feuer

All that JAAS

http://www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html

[104] Apache Software Foundation

SSL Configuration HOW-TO

http://tomcat.apache.org/tomcat-4.0-doc/ssl-howto.html

[105] IBM Redbooks

IBM WebSphere V5.1 Performance, Scalability and High Availability

June 2004

[106] Sun Microsystems

Keytool - Key and Certificate Management Tool

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

[107] Mahfuzur Rahman and Prabir Bhattacharya

Secure Network Communication using Biometrics

IEEE International Conference on Multimedia and Expo (ICME'01)

[108] Gregory R. Doddrell

Information security and the Internet

Internet Research: Electronic Networking Applications and Policy

Volume 6, Number 1, Pages 5–9, 1996

[109] META Group

The Evolution of Network Security: From DMZ Designs to Devices

May 2004

http://www.juniper.net/solutions/literature/white_papers/200084.pdf

I

Appendices

II

Appendix I

The following paper ‘Perception: The Real Inhibitor to ASP Adoption?’ was presented by

the author at the 2005 Information Technology & Telecommunications (IT&T)

Conference on ‘Information Infrastructures – Systems Architecture and Content’. The

conference was held the 26th-27th of October 2005, at the National Maritime College,

Cork Institute of Technology. The paper was published on pages 187-195 of the

conference proceedings.

III

Perception: The Real Inhibitor to ASP

Adoption?

Sabrina McNeely
1
, Kenneth Kirrane

2
,

 John Healy
3
, Sean Duignan

4

Department of Maths & Computing,

Galway-Mayo Institute of Technology,

Galway, Ireland.

Tel: +353 (0) 91 753161

E-mail
1
: sabrina.mcneely@gmit.ie

E-mail
2
: kenneth.kirrane@gmit.ie

E-mail
3
: john.healy@gmit.ie

E-mail
4
: sean.duignan@gmit.ie

Abstract: Upon its inception, many heralded the ASP paradigm as the death knell of

software-as-a-product, and the birth of software-as-a-service. Despite the hype

however, uptake is struggling to reach the levels many analysts predicted for the ASP

model. This paper identifies and examines the key factors influencing the adoption of

ASP, and highlights the inconsistencies in the available literature. We identify several

questions that remain unanswered, which may be adversely influencing user

perceptions of the model. In order to address these questions, areas of further research

are proposed to deconstruct the inhibitors of the ASP paradigm, and ultimately answer

the most burning question: Is perception the primary inhibitor to the uptake of the

ASP model?

1. Introduction

The Application Service Provision (ASP) model has had many guises over the years

including software-as-a-service, on-demand computing and utility computing. However,

its underlying premise remains unchanged: Application Service Providers (ASPs) offer

multiple users a subscription-based access model via the Internet to centrally managed

applications [1]. ASPs provide access to software on a one-to-many basis and thus the

cost of ownership and maintenance of the solution is shared by several clients. Service

level agreements (SLAs) assist in ensuring client expectations are met with regard to the

performance of the ASP solution.

Despite the initial hype, user uptake of the ASP model has been slow to

materialise. In 2001 the International Data Corporation (IDC) Group forecast that

mailto:sabrina.mcneely@gmit.ie
mailto:kenneth.kirrane@gmit.ie
mailto:john.healy@gmit.ie
mailto:sean.duignan@gmit.ie

IV

spending on ASPs would grow to $24 billion by 2005 [2]. By 2002/2003, the ASP market

seemed all but dead, with a 90 percent failure rate according to industry analysis [3]. IDC

reports that the ASP market had only reached $5 billion by 2003 falling far short of that

which was first envisaged [4]. Current estimates indicate worldwide spending on

software as a service and associated software license revenue will reach $15.2 billion by

2007, much lower than earlier predictions but substantial nonetheless [4] [5]. The above

statistics suggest that ASP has been given a new lease of life.

Although many papers are quick to quote statistics and outline the determinants of

ASP adoption, few delve into the reasoning behind these determinants, be they positive or

negative. The objective of this paper is to identify and examine the key factors

influencing the adoption of the ASP model. To accomplish this objective, this paper

explores the existing literature in order to formulate a consensus on the reasons pertaining

to the uptake or otherwise of the ASP model. Our analysis is divided into three distinct

sections. First, we establish the key factors that individually lead to either an affirmative

or adverse decision with regard to the uptake of the ASP model. Second, we attempt to

expand on the research to date by examining each of these factors and their relevance to

the adoption of the ASP as a whole. Finally, we conclude the paper by highlighting the

required direction for further research of the ASP model.

2. Identification of the key factors influencing ASP adoption

In depth analysis of the literature highlights economies of scale as the key driver of the

ASP paradigm [1], [6], [7], [8], [9], [10]. ASPs exhibit economies of scale as the cost of

the solution is distributed among its customers on a one-to-many basis. In addition to

economies of scale, Walsh [10] interestingly highlights security and reliability as major

benefits of the ASP model, and states that for small or midsize organisations, ASPs can

provide greater levels of security and reliability than the customers own organisation

[10]. Walsh’s point is contrary to the norm, as uncertainties with regard to security and

privacy as well as performance concerns in the form of availability, scalability and

reliability, are cited as the main inhibitors to the uptake of the ASP model [5], [11], [12].

V

This section is dedicated to examining each of the above factors in order to assess the

benefits or threats they potentially pose to the adoption of the ASP model.

2.1 Economies of scale

In economic terms, economies of scale are achieved when the average cost of producing a

product diminishes as each additional product is produced, as the fixed costs are shared

over an increasing number of products. The economies of scale model is equally viable

with regard to service provisioning. ASPs achieve economies of scale by lowering the

average cost of the service through sharing fixed costs among many users. A survey

conducted by the Information Technology Association of America (ITAA) in 2002

investigated key user expectations in selecting ASPs. Results of that survey indicate that

39 percent of respondents estimate their return on investment of between 10 and 50

percent, while an additional 14 percent of respondents placed it between 51 and 100

percent [13]. The cost savings highlighted by the ITAA survey offer some solace to

companies burdened by an increased reliance on IT, and its associated costs. ASPs can

alleviate this burden, thus allowing a company to focus on other core areas of their

enterprise. By contrast, a survey of 250 IT managers conducted by Informationweek.com

highlights a high degree of scepticism with regard to the claimed cost advantages /

economies of scale [14].

2.2 Performance (high availability, scalability and reliability)

Due to ASPs network-centric delivery model, performance considerations in terms of

high-availability, scalability and reliability are often cited as the major inhibitors to the

widespread uptake of the ASP model [5], [11], [12], [15]. High Availability (HA)

requires systems designed to tolerate faults – to detect a fault, report it, mask it, and then

continue service while the faulty component is repaired offline [16]. In the majority of

cases, availability is expressed as a percentage of system up time, with “five nines” or

99.999% availability a desired level of availability for most ASPs. Scalability refers to

the ability of a system to accommodate an increasing number of elements or objects, to

process growing volumes of work gracefully, and/or to be susceptible to enlargement

[17]. Systems should not only adapt to their new configurations, they should be able to

VI

operate with the same level of efficiency and to the same standard of service. Reliability

is defined as the assurance a product will perform its intended function for the required

duration within a given environment. Reliability is best described as product performance

over time [18]. A reliable system should consistently produce the same results, while

meeting, or exceeding customer expectations.

Kern et al (2002) report that 85% of potential ASP customers rate quality of

service as being one of the key factors in ASP satisfaction. The majority of potential ASP

customers also rate scalability and flexibility as being very important [19]. A large factor

in service quality, availability and scalability, for web-hosted applications is the quality

and speed of the underlying network in delivering the service offering to its customers.

Many factors influence network quality, such as bandwidth limitations, network latency

and reliability of the Internet. This is especially true in the ASP paradigm as all the

application processing takes place on the application server, with the results returned to

geographically dispersed users over the network in a thin-client model. These findings are

corroborated by ITAA’s (2001) survey of key user expectations with respect to ASP –

over 80% of respondents claimed that guarantees on network reliability were a very

important feature of Service Level Agreements (SLAs) between ASP and clients [2].

 Availability and performance are probably two of the most important

characteristics of an ASP. Consequently, ASPs will generally invest heavily in backup

and redundant systems in order to minimise service disruption. Walsh notes that these

safeguards go beyond what many small to midsize companies can afford, and are thus

seen as a benefit of the ASP model [6]. Tao also suggests that most online service

providers do a better job of ensuring 24/7 application availability than customers could

[20]. Walsh and Tao’s position is further strengthened by various other references in the

literature pertaining to availability, scalability and reliability as benefits of the ASP model

[8], [11], [21], [22].

2.3 Security

Several researchers refer to security and privacy of data as one of the primary areas for

concern with regard to the realisation of an ASP solution [6], [8], [5], [12], [23]. Fears of

compromised security and privacy have prevented many firms from fully investigating

VII

and integrating the ASP business model [12]. Although both security and privacy are

concerned with guarding the clients sensitive data, they can be distinguished as follows:

 Security is used to refer to protection of the ASP solution and the data exchanged

or stored as part of the ASP solution. ASP security can be broken into three

distinct considerations: physical security, solution security and security and

integrity of client data [24].

 Privacy is exclusively concerned with ensuring the protection and integrity of the

client data exchanged or stored as part of the ASP solution from unauthorised

access.

Linthicum [23] outlines three possible security issues, which can be used to collaborate

the above definition of security. Poor network security may leave the hosted solution

open to external intrusion. Second, an unsatisfactory physical security policy may result

in an internal attack. Finally, there are concerns around the security firewalls that are

placed between the hosted application domains [23].

While the majority of research literature focus on the negative aspect of security,

Walsh [10] looks at security from a different perspective concentrating on the security

benefits that can be leveraged from an ASP solution. ASPs are responsible for defining

and adhering to a security policy, which meets the needs of their clients. Walsh [10]

states that often the security and reliability safeguards implemented by ASPs go beyond

what many small to midsize companies can afford and thus are a benefit of the ASP

model.

3. Analysis of the key factors influencing ASP adoption

Based on an in-depth analysis of the available literature, Economies of Scale,

Performance and Security have been identified as the key factors that influence the

uptake of the ASP model. The aim of this section is to expand on the research to date by

examining each of these factors and to assess their relevance to the success of the ASP

model in greater detail.

By operating a one to many business model ASPs can achieve economies of scale

in terms of applications, network costs, server technology and implementation expertise

[8]. It is argued however that clients who demand a high degree of customisation destroy

VIII

much of the value that economies of scale provide [25]. This results in the need to pay

higher fees for customised solutions. Do client requirements for customisation need to

adversely affect the benefits obtained through economies of scale? If the ASP offering is

based on open standards, then high levels of customisation may not equate to higher

costs. For example, many dedicated concert and entertainment venues see economies of

scale inherent in outsourcing their ticketing operations, an illustration that customisation

can be accommodated within a centralised environment – the ticketing solution provided

by “ASPs” can be customised with regards to venue, artist, date, etc, while the underlying

service offering remains the same.

Much of the literature suggests that performance considerations (and in particular

the issues of high-availability, scalability and reliability) are significant inhibitors to ASP

adoption. Notwithstanding that, other researchers suggest that given the sizeable

investments undertaken by ASP solution providers, the ASP model may actually offer

enhanced availability, scalability and reliability to the solution adopter. Indeed, many

mature and industry proven solutions can be cited that offer support to this notion.

Hewlett Packard's flagship version of the popular Unix operating system (HP-UX 11i) is

a case in point. Like many other product offerings in the marketplace, this operating

system is implemented on systems ranging from workstations and access servers to

application servers and data center servers - systems where high availability is of

paramount importance. HP-UX 11i scales easily to 64 processors and is designed to

allow for future scaling to 256 processors in a single system [26]. Other players in the

operating systems marketplace provide similar functionality in their products. Sun

Microsystems, for instance, offers Sun Fire E25K Server; a massively scalable, highly

available data center server that scales to 72 UltraSPARC IV processors. A key factor in

the design of the Sun Fire E25K Server is the ability to consistently deliver high levels of

reliability and availability [27]. Why then is performance perceived as an inhibitor to

ASP uptake, when industry proven solutions exist that support high-availability,

scalability and reliability?

Time and time again security and privacy are cited as major drawbacks to the

uptake of the ASP model. As previously outlined by Walsh [10], ASPs often have the

ability and resources to provide a higher level of security than many small to midsize

IX

companies [10]. The above begs the question: Is trust the key to viewing security as a

benefit or a threat to the uptake of the ASP model? In an attempt to answer this question

we examine security and specifically consider physical security, solution security and

security and integrity of client data.

Information Technology (IT) organisations have trusted data centers with the

security of their solution hardware for decades. Data centers have gained customer trust

by implementing strict physical security policies, ensuring access is restricted to

authorised personnel through the use of biometric scanners such as fingerprint or IRIS

identification, in addition to the use of passwords and armed guard protection of facilities

[6]. Surely ASPs have a vested interest in ensuring the physical security of their

hardware? Authentication, authorisation and encryption all fall under the solution

security umbrella. Organisations have made signification progress in securing systems

through authentication by enforcing the use of strong passwords. Restriction of access

(both local and network) is achieved through authorisation policies. Advances in network

security have alleviated the fear of transferring sensitive data such as bank and credit card

details. HyperText Transfer Protocol over Secure Sockets Layer (HTTPS) ensures the

privacy, integrity and consistency of data through the use of the encryption. Secure

Sockets Layer (SSL) has been widely implemented and is now the de facto standard for

providing secure e-commerce transactions over the web [28]. Are ASPs not equally

dedicated to preventing unauthorised access to machines on their network as their

clients? Although appropriate levels of physical and solution security assist in ensuring

security and privacy of data it is also essential that proven encryption techniques are used

and redundant hardware is disposed of in an appropriate manner. Software and data that

is no longer needed should be uninstalled and erased to ensure that it is not accessible to

unauthorised individuals. Yet again by implementing an appropriate security policy ASPs

could overcome this perceived problem. Surely ASPs strive to meet or even exceed

customer expectations?

Economies of scale, Performance and Security have been identified as the key

factors that influence the uptake of the ASP model. However our analysis of these factors

suggests than ‘perception’ may in fact be the factor most relevant to the success of the

X

ASP model. Is it possible that ‘bad press’ has influenced perception of the ASP model

and ultimately its uptake?

4. Conclusion

Our analysis of the factors influencing the uptake of the ASP model suggests that the

research conducted to date is at best, incomplete, or at worst, vague and ambiguous.

Further research is required to fully clarify the relevance of Economies of Scale,

Performance and Security, and most importantly Stakeholder Perceptions (Users, IT

Managers, Software Developers, Industry Analysts and Academics) to the adoption of the

ASP model as a whole. Perceptions have in the past greatly influenced the emergence or

otherwise of new paradigms and / or the rate of adoption of new products. Global

adoption of the automobile for instance was initially predicted to be in the low thousands

due to the fact that not enough people would work as chauffeurs. History tells us that this

fact was in the end an ill-informed and poorly validated perception. Closer to the world

of ASP there are similar examples of perceptions influencing critical thinking – consider

some of the IT industry’s view of the potential market for personal computing some 20 -

25 years ago! We suggest that perception is in fact a key inhibitor to the uptake of the

ASP model and seek to further this hypothesis. Highlighting the issue through this paper

is an initial step. Furthering the body of research focusing on ASP adoption is another

step in assessing our hypothesis. To begin to achieve this second step then, we propose a

survey of IT organisations that specifically explores all the factors pertinent to ASP

adoption at a much finer level of granularity. The primary focus of such a survey is to

explore “perceptions” in particular and how they influence ASP adoption rates.

Interviews should supplement the survey where appropriate to clarify any ambiguities

that arise. It is intended to finalise the design of the survey and target a representative

population in Ireland in 2005. An analysis of the research methodology and of the survey

results will be the subject of a later paper.

XI

5. References

[1] T. Kern et al – 2002,

“Exploring ASP as sourcing strategy: theoretical perspectives, propositions for practice”,

Journal of Strategic Information Systems 11 (2002) 153-177

[2] A. Suasaria et al – 2001,

“Making the Most out of an ASP Relationship”, IEEE Computer Society

http://csdl.computer.org/comp/mags/it/2001/06/f6063abs.htm, 7
th

 March 2005

[3] L. Haber – 2004,

“ASPs Still Alive and Kicking”, ASPnews.com – Trends

http://www.aspnews.com/trends/article.php/3306221, 7
th

 December 2005

[4] A. M. Konary - 2004,

“Presentation to the ITAA”, IDC Analyst Presentation to the ITAA - February 12, 2004,

http://www.IDC.com

[5] N. Daylami et al – 2005,

“Determinants of Application Service Provider (ASP) Adoption as an Innovation”,

Proceedings of the 38
th

 Hawaii International Conference on System Sciences (HICSS-38

2005)

[6] K. R. Walsh – 2003,

“Analysing the Application ASP Concept: Technologies, Economies, and Strategies”,

Communications of the ACM, August 2003 Vol. 46, No. 8

[7] B. Desai and W. L. Currie – 2003,

“Application Service Providers: A model in Evolution”, The Fifth International

Conference on Electronic Commerce, ICEC 2003

[8] T. Kern and J. Kreijger – 2001,

“An Exploration of the Application Service Provision Outsourcing Option”, Proceedings

of the 34
th

 Hawaii International Conference on System Sciences (HICSS-34 2001)

[9] B. Vassiliadis et al – 2004,

“Application Service Provision through the Grid: Business models and Architectures”,

Proceedings of the International Conference on Information Technology: Coding and

Computing (ITCC’04)

[10] K. R. Walsh – 2003,

“Analysing the Application ASP Concept: Technologies, Economies, and Strategies”,

Communications of the ACM, August 2003 Vol. 46, No. 8

XII

[11] B. Jaruzelski et al – 2001,

“ASP 101: Understanding the Application Service Provider Model”, Booz, Allen,

Hamilton Consulting,

http://extfile.bah.com/livelink/livelink/61813/?func=doc.Fetch&nodeid=61813, 11
th

March 2005

[12] B. Desai – 2002,

“Market Entry Strategies of Application Service Providers: Identifying Strategic

Differentiation”, Proceedings of the 36
th

 Hawaii International Conference on System

Sciences (HICSS-36 2003).

[13] T. Burton – 2002,

“ITAA Survey Shows ASP Customers Achieve Real Benefits from Outsourcing”,

Information Technology Association of America,

http://www.itaa.org/news/pr/PressRelease.cfm?ReleaseID=1017252264, 8
th

 March 2005

[14] J. Mateyaschuk - 1999,

“Leave the Apps to us! ASPs offer benefits through economies of scale”,

Informationweek.com,

http://www.informationweek.com/756/asp.htm, 25
th

 April 2005

[15] D. Greschler and T. Mangan – 2002,

“Networking lessons in delivering ‘Software as a Service’ – Part 1”, International

Journal of Network Management 2002; 12: 317 (DOI: 10.1002/nem.446)

[17] A. B. Bondi – 2000,

“Characteristics of Scalability and Their Impact on Performance”, Proceedings of the 2
nd

International Workshop on Software and Performance

[16] J. Gray and D. P. Siewirok – 1991,

“High-Availability Computer Systems”, IEEE Computer archive Volume 24, Issue 9

[18] IEEE Reliability Society – 2000,

“Reliability Engineering”, IEEE Reliability Society,

http://www.ewh.ieee.org/soc/rs/Reliability_Engineering/index.html, 25
th

 April 2005

[19] T. Kern et al – 2002,

“Netsourcing: Renting Business Applications and Services Over a Network”, ISBN: 0-13-

092355-9, Pretence Hall Publishing Inc.

[20] L. Tao – 2001,

“Shifting Paradigms with the Application Service Provider Model”, IEEE Computer

Society,

http://csdl.computer.org/comp/mags/co/2001/10/rx032abs.htm, 08
th

 Dec 2004

XIII

[21] B. Cohen – 2004,

“Smart Advice: Consider Purchasing Real-Time Collaboration Applications through an

ASP”, InformationWeek Advisory Council,

http://www.informationweek.com/shared/printableArticleSrc.jhtml?articleID=55800253,

25
th

April 2005

[22] D. Sovie and J. Hanson – 2001,

“Application Service Providers: Where are the real profit zones? ”, Mercer Management

Consulting,

 http://www.mercermc.com/Perspectives/Perspectives_pdfs/hanson_sovie-ASPprofit.pdf,

20
th

 January 2005

[23] D. Linthicum – 2002,

“To ASP or Not to ASP?”,

http://www.softwaremag.com/L.cfm?Doc=archive/2000apr/ASPorNot.html, 27
th

 April

2005

[24] T. Anderson – 1994,

“Management Guidelines for PC Security”, ACM SIGICE Bulletin - July 1994 - Volume

20, Issue 1, Pages 7-14

[25] P. Bendor-Samuel – 2001,

“Maximising the Benefits of Economies of Scale”, Outsourcing Journal Insights,

Outsourcing Journal May 2001

[26] Hewlett-Packard – 2005,

“HP-UX 11i, the Proven Foundation for the Adaptive Enterprise”, Hewlett-Packard,

http://www.hp.com/products1/unix/operating/index.html, 2
nd

 May 2005

[27] Sun Microsystems – 2005,

“HP-UX 11i, the Proven Foundation for the Adaptive Enterprise”, Sun High End Servers,

http://www.sun.com/servers/highend, 2
nd

 May 2005

[28] W. Chou

“Inside SSL: The Secure Sockets Layer Protocol”, IT Professional – July/August 2002

Vol. 4, No. 4 Pages 47-52

XIV

Appendix II

The following screenshots were taken from the Application Service Provision (ASP)

billing prototype case study, formally known as Billing4Rent. The prototype is

subdivided into three interconnected applications: the Billing4Rent Ltd. web application,

the billing solution and an administration tool.

XV

Billing4Rent web application ‘Home’ page

Billing4Rent web application ‘ASP Services’ page

XVI

Billing4Rent web application ‘Solution Hosting’ page

Billing4Rent web application ‘Support’ page

XVII

Billing4Rent web application ‘Latest News’ page

Billing4Rent web application ‘Careers’ page

XVIII

Billing4Rent web application ‘Vacancies’ page

Billing4Rent web application ‘Contact Us’ page

XIX

Billing4Rent billing solution ‘Client Login’ page

Billing4Rent billing solution ‘Login unsuccessful’ page

XX

Billing4Rent billing solution ‘Display Client Details’ page

Billing4Rent billing solution ‘Update Client Details’ page

XXI

Billing4Rent billing solution ‘Display All Customers’ page

Billing4Rent billing solution ‘Register New Customer’ page

XXII

Billing4Rent billing solution ‘Register New Customer’ page

Billing4Rent billing solution ‘Delete Customer’ page

XXIII

Billing4Rent billing solution ‘Display All Products’ page

Billing4Rent billing solution ‘Register New Product’ page

XXIV

Billing4Rent billing solution ‘Update Existing Product’ page

Billing4Rent billing solution ‘Delete Product’ page

XXV

Billing4Rent billing solution ‘Display All Invoices’ page

Billing4Rent billing solution ‘Display Invoice’ page

XXVI

Billing4Rent billing solution ‘Create New Invoice’ page

Billing4Rent billing solution ‘Delete Invoices’ page

XXVII

Billing4Rent billing solution ‘File Upload’ page

Billing4Rent administration tool ‘Login’ page

XXVIII

Billing4Rent administration tool ‘Home’ page

Billing4Rent administration tool ‘Display All Users’ page

XXIX

Billing4Rent administration tool ‘Register New User’ page

Billing4Rent administration tool ‘Update Existing User’ page

XXX

Billing4Rent administration tool ‘Delete Users’ page

Billing4Rent administration tool ‘Display All Clients’ page

XXXI

Billing4Rent administration tool ‘Register New Client’ page

Billing4Rent administration tool ‘Invalid Client Password’ page

XXXII

Billing4Rent administration tool ‘Update Existing Client’ page

Billing4Rent administration tool ‘Delete Clients’ page

XXXIII

Billing4Rent administration tool ‘B4R Database Properties’ page

Billing4Rent administration tool ‘B4R Tablespace Properties’ page

XXXIV

Billing4Rent administration tool ‘B4R Table Sizes’ page

Billing4Rent administration tool ‘B4R Performance Monitor’ page

XXXV

Billing4Rent administration tool ‘B4R Security Log’ page

Billing4Rent administration tool ‘B4R Audit Log’ page

XXXVI

Billing4Rent administration tool ‘B4R Error Log’ page

XXXVII

XXXVIII

Appendix III

The following is an extract from the Billing4Rent security policy namely the ‘Security

Policy for the B4R ASP Service’ document. The security policy is composed of a

combination of guidelines with regard to general security, physical security, host security,

network security and data security adapted from the SANS (SysAdmin, Audit, Network,

Security) Institute security policy templates. A security policy is an ever-changing

document, constantly amended to cater for updates to the organisation’s systems and

procedures.

XXXIX

2 SECURITY STANDARDS & POLICIES

2.1 Standards

2.1.1 General Security

Billing4Rent reserves the right to periodically audit the Billing4Rent ASP infrastructure

to ensure compliance with the Security Policy for the Billing4Rent ASP Service.

Billing4Rent shall provide a complete architecture document that includes a full network

diagram of the Billing4Rent ASP environment, illustrating the relationship between the

ASP environment and any other relevant networks, with a full data flowchart detailing

where client data resides, the applications that manipulate it, and the security thereof.

Billing4Rent should be able to immediately disable all or part of the functionality of the

ASP solution should a security issue be identified. A Disaster Recovery Plan should be

documented and tested, to minimise the impact of interruption due to unavoidable events

and to ensure ease of recovery.

Non-intrusive Billing4Rent ASP network audits (basic portscans, etc.) may be performed

randomly, without prior notice. More intrusive network and physical audits may be

conducted with 24 hours notice.

2.1.2 Physical Security

The Billing4Rent ASP infrastructure (hosts, network equipment, etc.) should be located

in a physically secure facility otherwise known as a data center. Access to the facility

should be restricted to authorised personnel, through the use of biometric scanners plus

user pins or passwords.

XL

The Billing4Rent ASP infrastructure should be further secured physically, through the

use of security cables, padlocks and other such devices.

Billing4Rent shall document in the Billing4Rent ASP Access Control Policy stringent

access control policies and procedures, outlining who is authorised to enter the data

center, in addition to who is authorised to access the Billing4Rent ASP infrastructure.

Closed circuit television should be installed in order to monitor activities throughout the

data center. Billing4Rent shall document in the Billing4Rent ASP Closed Circuit

Television Policy the type of system used and security footage storage methods.

2.1.3 Host Security

Appropriate service packs and patches should be applied to the Billing4Rent ASP

operating systems and applications as soon as they are made available. Billing4Rent shall

document in the Billing4Rent ASP Service Packs /Patches Policy all current patches on

hosts, including host operating system patches, web servers, databases, and any other

applicable applications.

The corporate standard anti-virus/anti-spyware software should be installed on all

Billing4Rent machines. The anti-virus/anti-spyware site should be checked periodically

for a list of updates, which should be installed as they become available. Billing4Rent

shall document in the Billing4Rent ASP Anti-virus/Anti-spyware Policy how the

organisation will keep up to date with virus and spyware vulnerabilities and how updates

will be applied.

Access to Billing4Rent ASP solution should be restricted to authorised personnel by

enforcing strong passwords. Billing4Rent shall document in the Billing4Rent ASP

Password Policy guidelines for the generation of passwords for all Billing4Rent ASP

XLI

infrastructure, including minimum password length and how often passwords are

changed.

Billing4Rent shall document in the Billing4Rent ASP Account Maintenance Policy the

account generation, maintenance and termination process, for both maintenance as well

as user accounts.

Client data stored locally should be encrypted to ensure security and integrity of the data,

as outlined in the Billing4Rent ASP Cryptography Policy.

Billing4Rent shall document the organisations processes for monitoring the integrity and

availability of Billing4Rent ASP hosts in the Billing4Rent Audit Policy.

2.1.4 Network Security

The Billing4Rent ASP solution should be tested rigorously to ensure that neither the

application nor the configuration of the ASP environment pose a security risk.

The Billing4Rent ASP solution firewall should be configured to filter undesired traffic

between the Internet and Billing4Rent ASP infrastructure. All unnecessary services

running on the ASP infrastructure should be disabled, by shutting down unused ports.

Remote access to Billing4Rent ASP solution hardware should be limited to an absolute

minimum. Billing4Rent shall document in the Billing4Rent ASP Remote and Dial-in

Access Policies, standards for connecting to Billing4Rent's network from remote hosts.

Data sent over the Internet should be encrypted to ensure security and integrity of data

being transmitted as outlined in the Billing4Rent ASP Cryptography Policy.

XLII

2.1.5 Data Security

Billing4Rent shall document the organisations processes for protecting sensitive data in

the Billing4Rent Information Sensitivity Policy.

Redundant Billing4Rent ASP hardware should be disposed of in an appropriate manner.

Software and data should be uninstalled and erased to guarantee that sensitive data is not

accessible to unauthorised individuals.

Billing4Rent ASP solution software and the configuration of the Billing4Rent ASP

environment should be tested rigorously to ensure the security and the integrity of client

data. ASP solution security threats should be identified and the appropriate action should

be taken to combat unauthorised access to sensitive data.

2.2 Security Policies

2.2.1 Cryptography Policy

Proven, standard algorithms such as Advanced Encryption Standard (AES) and Ron

Rivest, Adi Shamir and Len Adleman Encryption (RSA) should be used as the basis for

encryption technologies. AES consists of 128-bit blocks with a 128-bit, 192-bit or

alternatively a 256-bit cipher key length. The number of rounds/iterations of the

encryption/decryption algorithm is dependent on the cipher key length. RSA encryption

security is based on the difficulty in factoring large numbers, with a key that varies

depending on the implementation used. RSA can also be used as a digital signature to

authenticate the originator and ensure the integrity of the data. For example, Secure

Socket Layer (SSL) uses RSA encryption. Encryption algorithms should be reviewed

regularly and updated based on technological advances. The use of proprietary encryption

algorithms is prohibited for any purpose.

XLIII

Connections to the Billing4Rent ASP utilising the Internet should be protected using any

of the following cryptographic technologies: IPSec, SSL, SSH/SCP, PGP.

2.2.2 Anti-virus/Anti-spyware Policy

Computer systems should be protected against infected by viruses (malicious applications

loaded onto a computer system without ones knowledge), worms (malicious applications

that can replicate themselves across a network) and spyware (software that covertly

gathers user information through the user's Internet connection without his or her

knowledge). The following procedure should be adhered to in order to provide optimal

protection against viruses, worms and spyware:

 The corporate standard anti-virus/anti-spyware software should be installed on all

Billing4Rent machines. The anti-virus/anti-spyware site should be checked

periodically for a list of updates, which should be installed as they become

available.

 Under no circumstances should files or macros attached to an email from an

unknown, suspicious or untrustworthy source be opened. Such files should be

deleted immediately, and emptied from the deleted items/trash folder.

 Under no circumstances should spam, chain, and other junk email be forwarded

either internally or externally. Such files should be deleted immediately, and

emptied from the deleted items/trash folder.

 Under no circumstances should files be downloaded from unknown or suspicious

sources.

 Direct disk sharing with read/write access should be avoided unless there is an

absolute business requirement to do so.

XLIV

 External media such as floppy disk’s, CDs and flash drives from unknown

sources should always be scanned before usage.

 Critical data and system configurations should be backed up on a regular basis

and stored in a safe place, in accordance with the Billing4Rent Disaster Recovery

Policy.

 If lab-testing conflicts with anti-virus/anti-spyware software, run the anti-

virus/anti-spyware utility to ensure a clean machine, disable the software, then run

the lab test. After the lab test, enable the anti-virus/anti-spyware software. When

the anti-virus/anti-spyware software is disabled, do not run any applications that

could transfer a virus, e.g., email or file sharing.

2.2.3 Password Policy

Passwords are an important aspect of computer security as they are the front line of

protection for user accounts. A poorly chosen password may result in the compromise of

Billing4Rent's entire corporate network. As such, all Billing4Rent employees (including

contractors and vendors with access to Billing4Rent systems) are responsible for taking

the appropriate steps, as outlined below, to select and secure their passwords:

 All system-level passwords (e.g., root, enable, NT admin, application

administration accounts, etc.) should be changed on at least a quarterly basis.

Password changes will be enforced with an automatic expiration and prevention

of repeated or reused passwords.

 All user-level passwords (e.g., email, web, desktop computer, etc.) should be

changed at least every six months. Password changes will be enforced with an

automatic expiration and prevention of repeated or reused passwords.

XLV

 User accounts that have system-level privileges granted through group

memberships should have a unique password from all other accounts held by that

user.

 All user-level and system-level passwords should conform to the following

guidelines:

1) Passwords should contain both upper and lower case characters (e.g., a-z, A-

Z).

2) Passwords should include digits and punctuation characters as well as letters

e.g., 0-9, !@#$%^&*()_+|~-=\`{}[]:";'<>?,./).

3) Passwords should be at least eight alphanumeric characters long.

4) Passwords should not be word in any language, slang, dialect, jargon, etc.

5) Passwords should not be based on personal information, names of family,

etc.

 Billing4Rent accounts should be different from all non-Billing4Rent passwords

(e.g., personal ISP account, option trading, benefits, etc.). Where possible,

different passwords should be used for various Billing4Rent access needs. For

example, select one password for the engineering systems and a separate

password for IT systems.

 Billing4Rent passwords should not be shared with anyone, including

administrative assistants or secretaries. All passwords are to be treated as

sensitive, confidential Billing4Rent information. If someone demands a

password, refer them to this document or have them speak to a member of the

Billing4Rent management team:

1) Don't reveal a password over the phone to ANYONE.

2) Don't reveal a password in an email message.

3) Don't reveal a password to the boss.

4) Don't talk about a password in front of others.

XLVI

5) Don't hint at the format of a password (e.g., "my family name").

6) Don't reveal a password on questionnaires or security forms.

7) Don't share a password with family members.

8) Don't reveal a password to co-workers while on vacation.

 The "Remember Password" feature of applications (e.g. Eudora, Outlook,

Netscape Messenger) should not be used.

 Passwords should not be written down and stored anywhere in your office or

stored electronically on any computer system (including Palm Pilots or similar

devices) without encryption.

 Passwords should not be inserted into email messages or other forms of

electronic communication.

 If it is suspected an account or password has been compromised, the incident

should be reported immediately to a member of the Billing4Rent management

team and all passwords should be changed.

 Application developers should ensure their programs contain the following

security precautions:

1) Support authentication of individual users, not groups.

2) Passwords should not be stored in clear text or in any easily reversible form.

3) Passwords should provide for some sort of role management, such that one

user can take over the functions of another without having to know the

other's password.

 Access to the Billing4Rent networks via remote access is to be controlled using

either a one-time password authentication or a public/private key system with a

strong passphrase.

XLVII

Passphrases are generally used for public/private key authentication. A

public/private key system defines a mathematical relationship between the public

key that is known by all, and the private key, that is known only to the user.

Without the passphrase to "unlock" the private key, the user cannot gain access.

Passphrases are not the same as passwords. A passphrase is a longer version of a

password and is, therefore, more secure. A passphrase is typically composed of

multiple words. Because of this, a passphrase is more secure against "dictionary

attacks."

A good passphrase is relatively long and contains a combination of upper and

lowercase letters and numeric and punctuation characters. An example of a good

passphrase:

"The*?#>*@TrafficOnThe101Was*&#!#ThisMorning"

All of the rules above that apply to passwords apply to passphrases.

2.2.4 Dial-In Access Policy

The purpose of this policy is to protect Billing4Rent's electronic information from being

inadvertently compromised by authorised personnel using a dial-in connection.

 Billing4Rent's employees and authorised third parties (customers, vendors, etc.)

can use dial-in connections to gain access to the corporate network. Dial-in access

should be strictly controlled, using one-time password authentication. Dial–in

passwords should be requesting using the Billing4Rent Account Request Process.

 It is the responsibility of individuals with dial-in access privileges to ensure

unauthorised individuals do not gain access to company information system

XLVIII

resources. An employee and/or authorised third party who is granted dial-in

access privileges should remain constantly aware that dial-in connections between

their location and Billing4Rent are literal extensions of Billing4Rent's corporate

network, and that they provide a potential path to the company's most sensitive

information. The employee and/or authorised third party individual should take

every reasonable measure to protect Billing4Rent 's assets.

 Analog and non-GSM digital cellular phones cannot be used to connect to

Billing4Rent's corporate network, as their signals can be readily scanned and/or

hijacked by unauthorised individuals. Only GSM standard digital cellular phones

are considered secure enough for connection to Billing4Rent's network. For

additional information on wireless access to the Billing4Rent's network, consult

the Wireless Communications Policy.

 Dial-in accounts are considered 'as needed' accounts. Account activity should be

monitored, and if a dial-in account is not used for a period of six months the

account should expire and no longer function. If dial-in access is subsequently

required, the individual should request a new account.

2.2.5 Remote Access Policy

The purpose of this policy is to define standards for connecting to Billing4Rent's network

from any host. These standards are designed to minimise the potential exposure to

Billing4Rent from damages, which may result from unauthorised use of Billing4Rent

resources. Damages include the loss of sensitive or company confidential data,

intellectual property, damage to public image, damage to critical Billing4Rent internal

systems, etc.

It is the responsibility of Billing4Rent employees, contractors, vendors and agents with

remote access privileges to Billing4Rent's corporate network to ensure that their remote

XLIX

access connection is given the same consideration as the user's on-site connection to

Billing4Rent.

General access to the Internet for recreational use by immediate household members

through the Billing4Rent network on personal computers is prohibited.

The following policies provide details in relation to the protecting of information when

accessing the corporate network via remote access methods, and acceptable use of

Billing4Rent's network:

1) Cryptography Policy

2) Virtual Private Network (VPN) Policy

3) Wireless Communications Policy

General Remote Access Guidelines:

 Secure remote access should be strictly controlled. Control should be enforced via

one-time password authentication or public/private keys with strong pass-phrases. For

information on creating a strong pass-phrase see the Billing4Rent Password Policy.

 At no time should any Billing4Rent employee provide their login or email password

to anyone, not even family members.

 Billing4Rent employees and contractors with remote access privileges should ensure

that their Billing4Rent owned or personal computer or workstation, which is remotely

connected to Billing4Rent 's corporate network, is not connected to any other network

at the same time, with the exception of personal networks that are under the complete

control of the user.

 Billing4Rent employees and contractors with remote access privileges to

Billing4Rent 's corporate network should not use non-Billing4Rent email accounts

(i.e., Hotmail, Yahoo, AOL), or other external resources to conduct Billing4Rent

L

business, thereby ensuring that official business is never confused with personal

business.

 Routers for dedicated ISDN lines configured for access to the Billing4Rent network

should meet minimum authentication requirements.

 Reconfiguration of a home user's equipment for the purpose of split-tunneling or dual

homing is not permitted at any time.

 Frame Relay should meet minimum authentication requirements of DLCI standards.

 A member of the Billing4Rent management team should approve non-standard

hardware configurations and security configurations for access to hardware.

 All hosts that are connected to Billing4Rent internal networks via remote access

technologies, should use the most up-to-date anti-virus/anti-spyware software, this

includes personal computers.

 Personal equipment that is used to connect to Billing4Rent's networks should meet

the requirements of Billing4Rent owned equipment for remote access.

2.2.6 Wireless Communication Policy

This policy prohibits access to Billing4Rent networks via unsecured wireless

communication mechanisms. Only wireless systems that meet the criteria of this policy

are approved for connectivity to Billing4Rent 's networks.

 Personal equipment that is used to connect to Billing4Rent's networks should meet

the requirements of Billing4Rent owned equipment for remote access.

LI

 All wireless access points/base stations connected to the corporate network should be

registered and approved the Billing4Rent management team. These access points/base

stations are subject to periodic penetration tests and audits. All wireless Network

Interface Cards (i.e., PC cards) used in corporate laptop or desktop computers should

be registered with he Billing4Rent management team.

 All wireless LAN access should use corporate-approved vendor products and security

configurations.

 All computers with wireless LAN devices should utilise a corporate-approved Virtual

Private Network (VPN) configured to drop all unauthenticated and unencrypted

traffic. To comply with this policy, wireless implementations should maintain point to

point hardware encryption of at least 56 bits. All implementations should support a

hardware address that can be registered and tracked, i.e., a MAC address.

 The Service Set Identifier (SSID) shall be configured so that it does not contain any

identifying information about the organisation, such as the company name, division

title, employee name, or product identifier.

2.2.7 Information Sensitivity Policy

The Information Sensitivity Policy is intended to help employees determine what

information can be disclosed to non-employees, as well as the relative sensitivity of

information that should not be disclosed outside of Billing4Rent without proper

authorisation.

The information covered in these guidelines includes, but is not limited to, information

that is either stored or shared via any means. This includes: electronic information,

information on paper, and information shared orally or visually (such as telephone and

video conferencing).

LII

All employees should familiarise themselves with the information labeling and handling

guidelines that follow this introduction. It should be noted that the sensitivity level

definitions were created as guidelines and to emphasise common sense steps that you can

take to protect Billing4Rent Confidential information (e.g., Billing4Rent Confidential

information should not be left unattended in conference rooms).

Questions about the proper classification of a specific piece of information or with regard

to these guidelines should be addressed to a member of the Billing4Rent management

team.

The sensitivity guidelines below provide details on how to protect information at varying

sensitivity levels. Use these guidelines as a reference only, as Billing4Rent Confidential

information in each column may necessitate more or less stringent measures of protection

depending upon the circumstances and the nature of the Billing4Rent Confidential

information in question.

Minimal Sensitivity

General corporate information; some personnel and technical information.

Marking guidelines for information in hardcopy or electronic form:

Marking is at the discretion of the owner or custodian of the information. If marking is

desired, the words "Billing4Rent Confidential" may be written or designated in a

conspicuous place on or in the information in question. Other labels that may be used

include "Billing4Rent Proprietary" or similar labels at the discretion of your individual

business unit or department. Even if no marking is present, Billing4Rent information is

presumed to be "Billing4Rent Confidential" unless expressly determined to be

Billing4Rent Public information by a Billing4Rent employee with authority to do so. Any

of these markings may be used with the additional annotation of "3rd Party Confidential".

LIII

Access: Billing4Rent employees, contractors, people with a business need to know.

Distribution within Billing4Rent: Standard interoffice mail, approved electronic mail

and electronic file transmission methods.

Distribution outside of Billing4Rent internal mail: An Phost mail and other public or

private carriers, approved electronic mail and electronic file transmission methods.

Electronic distribution: No restrictions except that it be sent to only approved

recipients.

Storage: Keep from view of unauthorised people; erase whiteboards, do not leave in

view on tabletop. Machines should be administered with security in mind. Protect from

loss; electronic information should have individual access controls where possible and

appropriate.

Disposal/Destruction: Deposit outdated paper information in specially marked disposal

bins on Billing4Rent premises; electronic data should be expunged/cleared. Reliably

erase or physically destroy media.

Medium Sensitivity

Business, financial, technical, and most personnel information.

Marking guidelines for information in hardcopy or electronic form:

As the sensitivity level of the information increases, you may, in addition or instead of

marking the information "Billing4Rent Confidential" or "Billing4Rent Proprietary", wish

to label the information "Billing4Rent Internal Use Only" or other similar labels at the

discretion of your individual business unit or department to denote a more sensitive level

LIV

of information. However, marking is discretionary at all times. Any of these markings

may be used with the additional annotation of "3rd Party Confidential".

Access: Billing4Rent employees and non-employees with signed non-disclosure

agreements who have a business need to know.

Distribution within Billing4Rent: Standard interoffice mail, approved electronic mail

and electronic file transmission methods.

Distribution outside of Billing4Rent internal mail: Sent via An Phost. mail or

approved private carriers.

Electronic distribution: No restrictions to approved recipients within Billing4Rent, but

should be encrypted or sent via a private link to approved recipients outside of

Billing4Rent premises.

Storage: Individual access controls are highly recommended for electronic information.

Disposal/Destruction: In specially marked disposal bins on Billing4Rent premises;

electronic data should be expunged/cleared. Reliably erase or physically destroy media.

Maximum Sensitivity

Trade secrets & marketing, operational, personnel, financial, source code, & technical

information integral to the success of our company.

Marking guidelines for information in hardcopy or electronic form:

To indicate that Billing4Rent Confidential information is very sensitive, you may should

label the information "Billing4Rent Internal: Registered and Restricted", "Billing4Rent

Eyes Only", "Billing4Rent Confidential" or similar labels at the discretion of your

LV

individual business unit or department. Once again, this type of Billing4Rent

Confidential information need not be marked, but users should be aware that this

information is very sensitive and be protected as such. Any of these markings may be

used with the additional annotation of "3rd Party Confidential".

Access: Only those individuals (Billing4Rent employees and non-employees) designated

with approved access and signed non-disclosure agreements.

Distribution within Billing4Rent: Delivered direct - signature required, envelopes

stamped confidential, or approved electronic file transmission methods.

Distribution outside of Billing4Rent internal mail: Delivered direct; signature

required; approved private carriers.

Electronic distribution: No restrictions to approved recipients within Billing4Rent, but

it is highly recommended that all information be strongly encrypted.

Storage: Individual access controls are very highly recommended for electronic

information. Physical security is generally used, and information should be stored in a

physically secured computer.

Disposal/Destruction: Strongly Encouraged: In specially marked disposal bins on

Billing4Rent premises; electronic data should be expunged/cleared. Reliably erase or

physically destroy media.

2.2.8 Virtual Private Network (VPN) Policy

The purpose of this policy is to provide guidelines for Remote Access IPSec or L2TP

Virtual Private Network (VPN) connections to the Billing4Rent corporate network.

Approved Billing4Rent employees and authorised third parties (customers, vendors, etc.)

LVI

may utilise the benefits of VPNs, which are a "user managed" service. This means that

the user is responsible for selecting an Internet Service Provider (ISP), coordinating

installation, installing any required software, and paying associated fees. Further details

may be found in the Remote Access Policy.

 It is the responsibility of employees with VPN privileges to ensure that unauthorised

users are not allowed access to Billing4Rent internal networks.

 VPN use is to be controlled using either a one-time password authentication such as a

token device or a public/private key system with a strong passphrase.

 When actively connected to the corporate network, VPNs will force all traffic to and

from the PC over the VPN tunnel: all other traffic will be dropped.

 Dual (split) tunneling is NOT permitted; only one network connection is allowed.

 VPN gateways will be set up and managed by Billing4Rent network operational

groups.

 All computers connected to Billing4Rent internal networks via VPN or any other

technology should use the most up-to-date anti-virus/anti-spyware software that is the

corporate standard this includes personal computers.

 VPN users will be automatically disconnected from Billing4Rent's network after

thirty minutes of inactivity. The user should then logon again to reconnect to the

network. Pings or other artificial network processes are not to be used to keep the

connection open.

 The VPN concentrator is limited to an absolute connection time of 24 hours.

LVII

 Users of computers that are not Billing4Rent owned equipment should configure the

equipment to comply with Billing4Rent 's VPN and Network policies.

 Only VPN clients approved by the Billing4Rent management team may be used.

 By using VPN technology with personal equipment, users should understand that

their machines are a de facto extension of Billing4Rent’s network, and as such are

subject to the same rules and regulations that apply to Billing4Rent owned

equipment.

2.2.9 Account Maintenance Policy

Billing4Rent login accounts are an important aspect of computer security, as along with a

corresponding password they provide access to data stored locally and on other machines

connected to the Billing4Rent corporate network. As such, all Billing4Rent employees

(including contractors and vendors with access to Billing4Rent systems) are responsible

for taking the appropriate steps to safeguard account login information.

 The Billing4Rent network administration is responsible for the generation,

maintenance and termination of all Billing4Rent accounts i.e. user, system, email etc.

and associated privileges.

 It is the responsibility of the Billing4Rent department manager to notify the

Billing4Rent network administration of employee (including contractors and vendors

with access to Billing4Rent systems) commencement or termination.

 On commencement of employment an account maintenance form should be

completed by the Billing4Rent department manager and returned via email to the

network administrator. The Billing4Rent network administrator will confirm account

creation via return email.

LVIII

 All users are required to sign a declaration that they agree to comply with the

Billing4Rent Acceptable Use Policy, prior to using their computer account.

 Where possible, systems will be configured in order to force users to change their first

log-on password.

 Any user, who has being assigned an account to access a network or resource, should

keep the account details and corresponding password confidential.

 On termination of employment an account maintenance form should be completed by

the Billing4Rent department manager and returned via email to the network

administrator. The Billing4Rent network administrator will confirm account deletion

via return email.

 The allocation of system privileges is to be strictly controlled. Users are to be given

specific account profiles and privileges in accordance with their particular function or

role. Where additional privileges are required an account maintenance form should

be completed by the Billing4Rent department manager and returned via email to the

network administrator. The Billing4Rent network administrator will review and

respond to the request via return email.

 Accounts will be frozen after three failed logon attempts. All erroneous password

entries will be recorded in an audit log for later inspection and action, as necessary.

 All PCs, laptops and workstations should be secured by locking or logging-off

(control-alt-delete for Win2K users) when the host will be unattended.

 The Billing4Rent network administrator will delete accounts unused for a period of

six months from the system.

LIX

 The Billing4Rent network administrator may revoke accounts at any time if

computing privileges are abused.

2.2.10 Closed Circuit Television Policy

Close Circuit Television’s (CCTV) should be used in the data center as a security device

and also a deterrent. Cameras should be placed throughout the data center to ensure that

all critical Billing4Rent systems are monitored.

The CCTV camera output should be recorded onto digital storage, which eliminates daily

tape changing and storage.

Digital Video Recorders should be networked to allow stored or live images to be viewed

over the Billing4Rent network by multiple users.

The frame per second (fps) record rate should be a minimum of 15 fps. The higher the fps

rate is, the more natural the footage will look when played back. The lower the fps rate

the more footage you can fit on the hard drive.

2.2.11 Service Pack and Patches Policy

The Billing4Rent network administrator shall be responsible for maintaining a list of

software, service packs and patches for all Billing4Rent machines and ensuring all

machines are patches appropriately.

The Billing4Rent network administrator shall be responsible for the implementation of a

sign in/out policy for all software CDs/DVDs.

LX

Relevant software vendor sites (operating systems, web servers, databases etc.) should be

checked periodically for a list of updates. The Billing4Rent network administrator shall

ensure service packs and patches are rolled out to all machines.

2.2.12 Audit Policy

Billing4Rent shall document the organisations processes for monitoring the integrity and

availability of Billing4Rent ASP hosts in the Billing4Rent Audit Policy.

2.2.13 Acceptable Use Policy

The following activities are, in general, prohibited. Employees may be exempted from

these restrictions during the course of their legitimate job responsibilities (e.g., systems

administration staff may have a need to disable the network access of a host if that host is

disrupting production services). Under no circumstances is an employee of Billing4Rent

authorised to engage in any activity that is illegal under local, state, federal or

international law while utilising Billing4Rent-owned resources.

The lists below are by no means exhaustive, but attempt to provide a framework for

activities which fall into the category of unacceptable use.

2.2.13.1 System and Network Activities

The following system and network activities are strictly prohibited, with no exceptions:

 Violations of the rights of any person or company protected by copyright, trade

secret, patent or other intellectual property, or similar laws or regulations, including,

LXI

but not limited to, the installation or distribution of "pirated" or other software

products that are not appropriately licensed for use by Billing4Rent.

 Unauthorised copying of copyrighted material including, but not limited to,

digitisation and distribution of photographs from magazines, books or other

copyrighted sources, copyrighted music, and the installation of any copyrighted

software for which Billing4Rent the end user does not have an active license is

strictly prohibited.

 Exporting software, technical information, encryption software or technology, in

violation of international or regional export control laws, is illegal. The appropriate

management should be consulted prior to export of any material that is in question.

 Introduction of malicious programs into the network or server (e.g., viruses, worms,

Trojan horses, e-mail bombs, etc.).

 Revealing your account password to others or allowing use of your account by others.

This includes family and other household members when work is being done at home.

 Using a Billing4Rent computing asset to actively engage in procuring or transmitting

material that is in violation of sexual harassment or hostile workplace laws in the

user's local jurisdiction.

 Making fraudulent offers of products, items, or services originating from any

Billing4Rent account.

 Making statements about warranty, expressly or implied, unless it is a part of normal

job duties.

 Effecting security breaches or disruptions of network communication. Security

breaches include, but are not limited to, accessing data of which the employee is not

LXII

an intended recipient or logging into a server or account that the employee is not

expressly authorised to access, unless these duties are within the scope of regular

duties. For purposes of this section, "disruption" includes, but is not limited to,

network sniffing, pinged floods, packet spoofing, denial of service, and forged routing

information for malicious purposes.

 Port scanning or security scanning is expressly prohibited unless prior notification to

Billin4Rent is made.

 Executing any form of network monitoring which will intercept data not intended for

the employee's host, unless this activity is a part of the employee's normal job/duty.

 Circumventing user authentication or security of any host, network or account.

 Interfering with or denying service to any user other than the employee's host (for

example, denial of service attack).

 Using any program/script/command, or sending messages of any kind, with the intent

to interfere with, or disable, a user's terminal session, via any means, locally or via the

Internet/Intranet/Extranet.

 Providing information about, or lists of, Billing4Rent employees to parties outside

Billing4Rent.

2.2.13.2 Email and Communications Activities

The following email and communications activities are strictly prohibited, with no

exceptions:

LXIII

 Sending unsolicited email messages, including the sending of "junk mail" or other

advertising material to individuals who did not specifically request such material

(email spam).

 Any form of harassment via email, telephone or paging, whether through language,

frequency, or size of messages.

 Unauthorised use, or forging, of email header information.

 Solicitation of email for any other email address, other than that of the poster's

account, with the intent to harass or to collect replies.

 Creating or forwarding "chain letters", "Ponzi" or other "pyramid" schemes of any

type.

 Use of unsolicited email originating from within Billing4Rent’snetworks of other

Internet/Intranet/Extranet service providers on behalf of, or to advertise, any service

hosted by Billing4Rentor connected via Billing4Rent’snetwork.

 Posting the same or similar non-business-related messages to large numbers of Usenet

newsgroups (newsgroup spam).

2.2.14 Email Policy

The general public tends to view emails sent from Billing4Rent addresses as an official

policy statement. The following procedure should be adhered to in order to protect

Billing4Rent’s public image:

Reasonable usage of Billing4Rent resources for personal emails is acceptable, but non-

work related email should be saved in a separate folder from work related email.

LXIV

 The Billing4Rent email system shall not to be used for the creation or distribution of

any disruptive or offensive messages, including offensive comments about race,

gender, hair colour, disabilities, age, sexual orientation, pornography, religious beliefs

and practice, political beliefs, or national origin. Employees who receive any emails

with this content from any Billing4Rent employee should report the matter to their

manager immediately.

 Sending chain letters or joke emails from a Billing4Rent email account is strictly

prohibited. Sending virus or other malware warnings and mass mailings from a

Billing4Rent email account should be approved by a member of the Billing4Rent

management team prior to transmission. These restrictions also apply to the

forwarding of mail received by Billing4Rent employees.

 Monitoring of Billing4Rent email accounts is purely at the discretion of the

organisation and thus employees shall have no expectation of privacy in anything

they store, send or receive on the company’s email system.

2.3 Enforcement

Any individual found to have violated this policy may be subject to disciplinary action,

up to and including civil and/or criminal prosecution to the full extent of the law and

where applicable termination of employment.

